《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 電源技術(shù) > 設(shè)計(jì)應(yīng)用 > 將電池供電型微控制器系統(tǒng)耗電減到最少
將電池供電型微控制器系統(tǒng)耗電減到最少
摘要: 今日的便攜式產(chǎn)品設(shè)計(jì)對(duì)所用的電池會(huì)有些相互沖突的要求,,例如更豐富的產(chǎn)品功能會(huì)增加耗電,使用者也希望電池使用時(shí)間更長(zhǎng),,但不斷縮小的產(chǎn)品體積和成本限制卻使電池容量無(wú)法增加,,因此節(jié)省電力就成為最重要的考慮,。傳統(tǒng)設(shè)計(jì)為了將耗電減到最少,,通常都盡可能減少電流消耗,;但其實(shí)電池的蓄電量是電壓、電流和時(shí)間的乘積,,要有效提升整個(gè)系統(tǒng)的電源效率,,就必須同時(shí)考慮這三項(xiàng)變量,。微控制器系統(tǒng)若以電池做為電源,這些電池又能由使用者更換,,則可采用專為因應(yīng)這些變量而設(shè)計(jì)的微控制器,因?yàn)檫@些微控制器可通過(guò)芯片內(nèi)置電壓轉(zhuǎn)換等功能和傳統(tǒng)低耗電操
關(guān)鍵詞: 電源管理 DC/DC LDO RTC
Abstract:
Key words :

        今日的便攜式產(chǎn)品設(shè)計(jì)對(duì)所用的電池會(huì)有些相互沖突的要求,,例如更豐富的產(chǎn)品功能會(huì)增加耗電,,使用者也希望電池使用時(shí)間更長(zhǎng),但不斷縮小的產(chǎn)品體積和成本限制卻使電池容量無(wú)法增加,,因此節(jié)省電力就成為最重要的考慮,。傳統(tǒng)設(shè)計(jì)為了將耗電減到最少,通常都盡可能減少電流消耗,;但其實(shí)電池的蓄電量是電壓,、電流和時(shí)間的乘積,要有效提升整個(gè)系統(tǒng)的電源效率,,就必須同時(shí)考慮這三項(xiàng)變量,。微控制器系統(tǒng)若以電池做為電源,這些電池又能由使用者更換,,則可采用專為因應(yīng)這些變量而設(shè)計(jì)的微控制器,,因?yàn)檫@些微控制器可通過(guò)芯片內(nèi)置電壓轉(zhuǎn)換等功能和傳統(tǒng)低耗電操作模式來(lái)解決前述問(wèn)題。

電池特性

       多數(shù)低端和中端便攜式產(chǎn)品都會(huì)使用可替換的電池或充電電池,,這些電池還能由使用者自行更換,。如圖1所示,剛充完電時(shí)的單節(jié)電池電壓通常會(huì)在1.2-1.6V之間,,電力耗盡時(shí)則下降至0.9-1.0V,。把兩個(gè)單節(jié)電池串聯(lián)即可提供1.8-3.2V之間的電壓。
 



正常操作時(shí)的微控制器電源特性

        常見(jiàn)的低耗電微控制器都能在兩顆電池的供電范圍操作,。例如多數(shù)8和16位微控制器都是采用0.35微米CMOS技術(shù),,它們的操作電壓最高達(dá)到3.6V,但若電壓只有1.8V就會(huì)影響其效能,。電壓較低時(shí),,數(shù)字邏輯的操作速度會(huì)變慢,模擬開(kāi)關(guān)組件的導(dǎo)通阻抗也會(huì)變大,。組件效能同樣會(huì)隨著電池電壓改變,,只不過(guò)電池電壓與應(yīng)用需求通常毫不相干。除此之外,,如果數(shù)字邏輯的設(shè)計(jì)是為了在最低電池電壓下操作,,它在電壓較高時(shí)就會(huì)消耗較多的電流。

       CMOS邏輯門(mén)的動(dòng)態(tài)功耗可寫(xiě)為:P = C × V2 × f,,其中C為負(fù)載電容,,它是設(shè)計(jì)和工藝技術(shù)的函數(shù),;V為供應(yīng)電壓;f則是開(kāi)關(guān)頻率,,它是應(yīng)用處理需求的函數(shù),。電源電壓是控制功耗的主要手段,因此若能像C8051F9xx內(nèi)含低壓差 (LDO) 穩(wěn)壓器一樣,,直接在芯片中增加電壓轉(zhuǎn)換功能,,就能提供穩(wěn)定的1.8V電壓給微控制器的數(shù)字核心 (參考圖2),使動(dòng)態(tài)功耗大幅下降,。

 



電壓轉(zhuǎn)換的好處

       觀察CMOS技術(shù)的動(dòng)態(tài)功耗關(guān)系有助于了解使用LDO穩(wěn)壓器的優(yōu)點(diǎn):

         P = C × V2 × f
             = V × (C × V × f)
             = V × I
             其中動(dòng)態(tài)電流I = C × V × f

        分析動(dòng)態(tài)電流時(shí),,我們常以1MHz頻率或特定電源電壓為基準(zhǔn)將動(dòng)態(tài)電流正規(guī)化;例如在1.8V電壓下,,常見(jiàn)的低耗電微控制器每MHz會(huì)有220μA的動(dòng)態(tài)電流消耗,。如果沒(méi)有電源穩(wěn)壓,則在電壓為3.2V時(shí)會(huì)增加到每MHz等于220 × (3.2/1.8) = 391μA,。但若使用LDO穩(wěn)壓器,,電池電流在整個(gè)電壓范圍都會(huì)固定在每MHz為220μA。設(shè)計(jì)人員還能升級(jí)到更先進(jìn)的0.18微米工藝技術(shù),,使數(shù)字邏輯的速度更快,,電流消耗則減少2到3成。要將操作電壓降至1.8V以下其實(shí)并不難,,但現(xiàn)有的閃存技術(shù)至少需要1.8V電壓,,許多模擬外圍也需要1.8V以上的電壓來(lái)滿足效能和應(yīng)用需求。

        圖1顯示沒(méi)有一種單電池或雙電池架構(gòu)能提供1.6-1.8V間的電壓,。若微控制器核心電壓在這個(gè)范圍,,那么使用2顆電池時(shí)可由LDO提供所需電壓,若是1顆電池則可使用以電感為基礎(chǔ)的DC/DC升壓轉(zhuǎn)換器,。在整個(gè)電池壽命期間,,電池供電電路只需進(jìn)行升壓或降壓轉(zhuǎn)換,不必在兩種模式之間動(dòng)態(tài)切換,。集成式DC/DC升壓轉(zhuǎn)換器 (例如C8051F9xx內(nèi)含轉(zhuǎn)換器) 雖會(huì)使電路復(fù)雜性略增,,卻能讓系統(tǒng)靠著一顆電池操作,大幅降低產(chǎn)品的成本與體積,。 

         LDO雖能大幅降低雙電池系統(tǒng)的耗電,,DC/DC升壓轉(zhuǎn)換器卻能提供比LDO還高的整體電源效率。在其它條件都相同的情形下,,單電池設(shè)計(jì)若采用效率高達(dá)80%的DC/DC升壓轉(zhuǎn)換器,,則其耗電將只有不含LDO的傳統(tǒng)0.35微米雙電池設(shè)計(jì)的一半。

休眠模式要求

        要提供最大電源效率和最長(zhǎng)電池壽命,就必須將微控制器在喚醒過(guò)程和正常模式下的操作最佳化,,確保組件多數(shù)時(shí)間都處于超低耗電的休眠模式,。在有些應(yīng)用中,休眠模式電流是影響整體電源消耗的最大因素,。

        要將休眠模式的電流減到最少,,就必須關(guān)閉LDO和DC/DC轉(zhuǎn)換器,同時(shí)切斷數(shù)字核心的電源供應(yīng),。它們必須能快速啟動(dòng),,以便微控制器迅速回到正常操作模式。電源管理和實(shí)時(shí)時(shí)鐘電路 (RTC) 等許多模塊就算在休眠模式也要操作,,故須能使用0.9-3.2V的未穩(wěn)壓電源工作。切斷數(shù)字核心邏輯的電源還能防止截止?fàn)顟B(tài)漏電流造成休眠模式電流增加,,只不過(guò)微控制器即使進(jìn)入休眠模式,,也要保存RAM內(nèi)存和所有緩存器的內(nèi)容,以便程序從正確的位置恢復(fù)執(zhí)行,。它還需要某種型式的連續(xù)供應(yīng)電壓監(jiān)控或電壓突降偵測(cè) (brownout detection) 功能,,確保電壓就算降到保存數(shù)據(jù)所需的最低電壓以下,這些狀態(tài)數(shù)據(jù)也不會(huì)毀損,。

        最后,,微控制器應(yīng)能在外部事件觸發(fā)或內(nèi)部計(jì)時(shí)終止時(shí)離開(kāi)休眠模式,而且最好能夠同時(shí)支持石英晶體或RC振蕩器,。為了確保電池壽命最長(zhǎng),,整個(gè)芯片包括電壓突降偵測(cè)電路和32.768KHz石英振蕩器在內(nèi)的休眠模式電流應(yīng)小于1μA。舉例來(lái)說(shuō),,C8051F9xx包括電壓突降偵測(cè)電路在內(nèi)的典型休眠模式電流只有50nA,,還能迅速?gòu)男菝吣J交氐秸2僮髂J?(使用2顆電池時(shí)通常為2μs,1顆電池時(shí)則不到10μs),。

將正常操作模式的時(shí)間減到最少

        微控制器在休眠模式和正常模式之間切換時(shí),,盡管電流消耗較大,實(shí)際卻未做什么有用的工作,??焖賳拘褧r(shí)間能節(jié)省耗電,并對(duì)具有時(shí)效性的觸發(fā)事件迅速做出響應(yīng),,例如因?yàn)榇卸丝趧?dòng)作而回到正常模式,。避免在高速系統(tǒng)頻率電路中使用啟動(dòng)緩慢的石英振蕩器,而應(yīng)選擇精確和快速啟動(dòng)的芯片內(nèi)置振蕩器,。模擬模塊的啟動(dòng)方式還會(huì)對(duì)微控制器停留在正常模式的時(shí)間造成很大影響,,例如使用外部解耦合電容的穩(wěn)壓器或電壓參考電路可能需要數(shù)毫秒才能穩(wěn)定。進(jìn)入正常操作模式后,,數(shù)字核心應(yīng)以最大頻率頻率工作,,這樣才能讓靜態(tài)電流分?jǐn)偟捷^多的頻率周期,,使得每MHz的電流消耗降低。分析這項(xiàng)效能指標(biāo)時(shí),,最好將所有的靜態(tài)電流源包含在內(nèi),,如供應(yīng)電壓和頻率監(jiān)控電路、參考電壓電路,、LDO穩(wěn)壓器和系統(tǒng)頻率振蕩器,。

集成式解決方案的優(yōu)點(diǎn)

        無(wú)論讓傳統(tǒng)微控制器搭配外接式LDO穩(wěn)壓器或DC/DC升壓轉(zhuǎn)換器,其效能都比不上完全集成式解決方案,。集成式組件不但大幅減少體積和成本,,集成式電壓轉(zhuǎn)換器的效率通常也較高,因?yàn)樗鼈兪菍楣╇娊o微控制器核心所設(shè)計(jì),。最后,,外接式轉(zhuǎn)換器不能關(guān)機(jī)進(jìn)入休眠模式,否則就無(wú)法提供電源給微控制器,。有些外接式DC/DC升壓轉(zhuǎn)換器可于待機(jī)模式下提供電源給休眠中的微控制器,,但待機(jī)模式通常會(huì)從電池汲取數(shù)十微安培的電流。

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。