許多光伏(PV)器件――包括光伏板和聚光光伏(CPV)模塊等――都需要進(jìn)行戶外測(cè)試,,以驗(yàn)證其設(shè)計(jì)的正確性,、耐用性和安全性,。在測(cè)試戶外光伏器件輸出功率時(shí),一種較為經(jīng)濟(jì)的方法是使用直流電子負(fù)載(eload),;直流電子負(fù)載能夠以較低的成本提供大功率處理能力,。
通常,戶外光伏測(cè)試涉及到的一個(gè)主要函數(shù)就是最大功率點(diǎn)跟蹤(MPPT),。但由于電子負(fù)載是通用儀器,,光伏測(cè)試工程師需要在測(cè)試軟件中使用算法來(lái)執(zhí)行最大功率點(diǎn)跟蹤。幸運(yùn)的是,,有許多最大功率點(diǎn)跟蹤算法可供選擇,,而且在公開(kāi)發(fā)表的論文中有超過(guò) 19 篇論述了各種最大功率點(diǎn)跟蹤算法的實(shí)施與執(zhí)行 [1]。但是,,這些算法都是針對(duì)太陽(yáng)能逆變器設(shè)計(jì)的,。不同測(cè)試系統(tǒng)的逆變器各不相同,所以適用于逆變器的最大功率點(diǎn)跟蹤算法未必適合光伏測(cè)試系統(tǒng),。本文介紹了一種非常適用于通過(guò)電子負(fù)載執(zhí)行光伏測(cè)試的最大功率點(diǎn)跟蹤算法,,而且還探討了如何應(yīng)用該算法及其為何適用于戶外光伏測(cè)試系統(tǒng)的最大功率點(diǎn)跟蹤。
在逆變器和電子負(fù)載中實(shí)施特定大功率點(diǎn)跟蹤算法的最大差異是 I/O 時(shí)延,。在逆變器中,,最大功率點(diǎn)跟蹤算法在內(nèi)部微處理器上運(yùn)行,該微處理器可以在幾微秒內(nèi)進(jìn)行測(cè)量,、計(jì)算和負(fù)載調(diào)整,。使用定制軟件進(jìn)行同樣的操作時(shí),由于計(jì)算機(jī)和電子負(fù)載之間存在不可避免的 I/O 時(shí)延,,測(cè)量的時(shí)間很容易超過(guò)幾十毫秒,。這個(gè) I/O 時(shí)延便是影響跟蹤速度的主要瓶頸。為此,,我們使用以下三項(xiàng)標(biāo)準(zhǔn)來(lái)選擇和修改本文中討論的最大功率點(diǎn)跟蹤算法,,充分滿足光伏測(cè)試系統(tǒng)的需求:
1.更少的 I/O 處理次數(shù):由于 I/O 處理次數(shù)影響最大功率點(diǎn)跟蹤的速度,因此 I/O 處理的數(shù)量必須少,,以保證在任何環(huán)境條件下都具有足夠的跟蹤響應(yīng),。
2.執(zhí)行的簡(jiǎn)便性:如果光伏測(cè)試中存在典型的時(shí)間和預(yù)算限制,而且您不想花費(fèi)太多時(shí)間實(shí)施復(fù)雜的最大功率點(diǎn)跟蹤算法,,因?yàn)檫@只是測(cè)試計(jì)劃中的一小部分,。
3.MPP 測(cè)量精度:測(cè)試數(shù)據(jù)必須精確,、可靠,以便恰當(dāng)?shù)仳?yàn)證光伏設(shè)計(jì)的性能,。
在介紹可滿足上述標(biāo)準(zhǔn)的算法之前,,我們先簡(jiǎn)單地討論一下電子負(fù)載。電子負(fù)載是一個(gè)可以接收和測(cè)量功率源(電源或光伏器件)輸出功率的工具,。同可變電阻器一樣,,電子負(fù)載可以進(jìn)行調(diào)節(jié)來(lái)控制正在接收的功率大小。電子負(fù)載可以測(cè)量通過(guò)的壓降和正在接收的電流,。其典型的工作模式有三種:恒定電壓,、恒定電流和恒定電阻。即使電子負(fù)載連接的電源輸出功率發(fā)生變化,,電子負(fù)載的模式設(shè)置都將保持不變,。例如,如果電子負(fù)載連接到一個(gè)光伏板的輸出端并設(shè)置為 25 V 的恒壓(CV)模式,,那么當(dāng)光伏板的 I-V 曲線發(fā)生變化時(shí),該電子負(fù)載會(huì)通過(guò)調(diào)節(jié)其內(nèi)部的電阻來(lái)保持 25 V 的恒定電壓,。如果光伏板的最大電壓(Voc)降至 25 V以下,,那么電子負(fù)載將斷開(kāi),它兩側(cè)的電壓將等于 Voc 的實(shí)際值,。在光伏測(cè)試中,,電子負(fù)載經(jīng)常使用恒壓(CV)模式,因此本文將使用這種模式來(lái)定義算法,。
電子負(fù)載最大功率點(diǎn)跟蹤算法
這種通過(guò)電子負(fù)載執(zhí)行最大功率點(diǎn)跟蹤的算法是電導(dǎo)增量(IC)算法的修正版,,我們稱之為電子負(fù)載電導(dǎo)增量(ICE)最大功率點(diǎn)跟蹤算法。如欲了解逆變器 IC 算法的詳細(xì)信息,,請(qǐng)查看論文“Maximum Photovoltaic Power Tracking: an Algorithm for Rapidly Changing Atmospheric Conditions(最大光伏功率跟蹤:適用于快速變化的大氣條件的算法)”[2],。ICE 算法是通過(guò)比較光伏器件輸出的增量電導(dǎo)和瞬時(shí)電導(dǎo)來(lái)進(jìn)行運(yùn)算。這些值顯示了 I-V 曲線的測(cè)量結(jié)果變化,,從而告訴我們是否跟蹤到最大功率點(diǎn)(MPP),,如果沒(méi)有的話,能夠通過(guò)什么方法來(lái)接近曲線并找到 MPP,。ICE 算法中用來(lái)跟蹤最大功率點(diǎn)的 V 和 I 的數(shù)學(xué)關(guān)系如下:
在最大功率點(diǎn)上 dP/dV = 0
在最大功率點(diǎn)右側(cè) dP/dV < 0
在最大功率點(diǎn)左側(cè) dP/dV > 0
其中 dP 是指功率變化,,并且等于 d(IV)。
當(dāng)然,,我們無(wú)法精確地計(jì)算出 dI,、dV 或 dP。但是我們可以使用以下關(guān)系式:?P = Pn – Pp,、?V = Vn – Vp 和 ?I = In – Ip 來(lái)估算近似值,,此處“P”代表之前測(cè)得的值,,“n”代表新測(cè)得的值。使用上述關(guān)系式我們可以得出:是處在 I-V 曲線的最大功率點(diǎn)(MPP)上還是在其左側(cè)(最大功率點(diǎn)的電壓值或 Vmp 處于較低的電壓電平)或其右側(cè)(Vmp 處于較高的電壓電平),。請(qǐng)見(jiàn)圖 1,。
圖 1 光伏 I-V 曲線
圖中文字中英對(duì)照:
Current Curve 1 Curve 3 Curve 2 Voltage |
電流 曲線 1 曲線 3 曲線 2 電壓 |
如圖 1 中的 ICE 實(shí)例所示,使用電子負(fù)載在三條 I-V 曲線上執(zhí)行最大功率點(diǎn)跟蹤,。電子負(fù)載設(shè)置為恒壓(CV)模式,。每條曲線上的彩色點(diǎn)代表該曲線的最大功率點(diǎn)(MPP)。起始點(diǎn)為曲線 1 上的最大功率點(diǎn)(藍(lán)點(diǎn)),。電子負(fù)載的 CV 設(shè)置為 Vmp,,而且我們已測(cè)量和存儲(chǔ)了該點(diǎn)的電流和電壓值。一旦發(fā)生變化,,便由曲線 1 轉(zhuǎn)到曲線 2,。如果現(xiàn)在測(cè)量電流和電壓,此時(shí)電壓保持不變(因?yàn)樵撾娮迂?fù)載是恒壓模式),,但是電流會(huì)發(fā)生變化,,因此可知我們已不在最大功率點(diǎn)上。由于電子負(fù)載是恒壓模式,,我們現(xiàn)在處在灰色箭頭“1”所指的曲線 2 的相應(yīng)點(diǎn)上,。通過(guò)下列關(guān)系式,我們可知道應(yīng)選擇什么方法來(lái)找到新的最大功率點(diǎn):如果 dI (使用 dI ≈ ?I = In – Ip 來(lái)估算)是負(fù)值,,則我們現(xiàn)在處于最大功率點(diǎn)的右側(cè),,需要向左側(cè)移動(dòng)(降低 CV 設(shè)置),反之,,如果 dI 是正值,,便進(jìn)行相反的操作。在此實(shí)例中,,由曲線 1 移到曲線 2,,dI 將變成負(fù)值,因此需要降低 CV 設(shè)置以便找到新的最大功率點(diǎn),。我們可通過(guò)設(shè)置某個(gè)電壓步長(zhǎng)(稱為 Vinc)來(lái)降低 CV 值?,F(xiàn)在,我們將處在一個(gè)不同的電壓和電流電平上,,所以需要使用這兩個(gè)參數(shù)來(lái)決定下一步的操作,。由于剛才在曲線 2 上向最大功率點(diǎn)移近了一些,那么 dP 是正值而 dV 為負(fù)值,,因此仍需向最大功率點(diǎn)的左側(cè)移動(dòng),。繼續(xù)增加 CV 設(shè)置直到 dP 值等于零,這意味著該點(diǎn)將不再有斜率(實(shí)際上不可能達(dá)到 dP=0,,但稍后將解釋這個(gè)問(wèn)題),。達(dá)到曲線2 的最大功率點(diǎn)之后,,我們將轉(zhuǎn)向曲線 3,那么我們現(xiàn)在位于灰色箭頭“2”所指的曲線 3 上,。因?yàn)殡妷喝员3植蛔?,我們需要再次通過(guò)測(cè)量電流變化來(lái)檢測(cè)所發(fā)生的變化。這時(shí) dI 是正值,,因此可知現(xiàn)在我們處于最大功率點(diǎn)的左側(cè),,需要通過(guò) Vinc 增加恒壓(CV)設(shè)置(移向曲線的右側(cè)),來(lái)找到最大功率點(diǎn),。
可能您已注意到:由于 ?P 和 ?V 只是近似于 dP 和 dV,,那么 dP/dV = 0 (?P/?V = 0)等式就不能實(shí)現(xiàn)。事實(shí)上,,由于我們正在通過(guò)逐步升高或降低電壓來(lái)尋找最大功率點(diǎn),,dV 將始終由 Vinc 的大小來(lái)決定,我們無(wú)法從其得知何時(shí)處于最大功率點(diǎn),,所以真正需要關(guān)注的只是 dP,。我們需要找出某個(gè)誤差值 E,如果滿足 E ≥ dP ≥ -E 的條件,,那么電子負(fù)載就是在最大功率點(diǎn)(MPP)上,。如果 E 值太小,則 ICE 算法的結(jié)果將在 MPP 左右擺動(dòng),。
請(qǐng)參見(jiàn)圖2,圖中顯示了如何執(zhí)行 ICE 最大功率點(diǎn)跟蹤算法的流程圖,。
圖 2 修正后的電導(dǎo)增量流程圖
圖中文字中英對(duì)照:
Inputs: Pn Vn In V changed last lteration? Yes No Decrement CV Setting by Vinc Increment CV Setting by Vinc Return |
輸入: Pn Vn In 上次迭代電壓是否改變,? 是 否 通過(guò) Vinc 降低 CV 設(shè)置 通過(guò) Vinc 提高 CV 設(shè)置 返回 |
在圖 2 所示的 ICE 流程圖中,寫(xiě)著“上次迭代電壓是否改變”的方框正在檢查在此算法的上次迭代過(guò)程中恒壓(CV)設(shè)置是否發(fā)生改變,。如果沒(méi)有變化,,說(shuō)明我們正好處在上次迭代的最大功率點(diǎn)上,因此可知上次迭代和本次迭代之間電壓沒(méi)有變化,。我們只需測(cè)量電流即可確定是否仍處在最大功率點(diǎn)上,。如果不是,那么我們需要通過(guò)什么方法調(diào)整 CV 設(shè)置才能找到最大功率點(diǎn),。這樣可以減少 I/O 處理次數(shù),,如前所述,I/O 處理次數(shù)是在測(cè)試系統(tǒng)中執(zhí)行最大功率點(diǎn)跟蹤的主要瓶頸,。
我們可以通過(guò)兩種方法來(lái)確定 IC 算法的最初點(diǎn)或起始點(diǎn),。第一種方法是通過(guò)在 Voc 到 0 V 之間步進(jìn)電子負(fù)載電壓來(lái)執(zhí)行 I-V 掃描,并在每次步進(jìn)中測(cè)量電流和電壓,。以數(shù)組的方式保存電流和電壓并將這些數(shù)組相乘得出每次步進(jìn)的功率數(shù)組,。找到功率步進(jìn)數(shù)組中的最大值,,它就是最初 I-V 曲線的最大功率點(diǎn)。將在 MPP(即 Vmp)上測(cè)得的電壓值作為電子負(fù)載和 ICE 算法的最初恒壓起始點(diǎn),。
另一種方法稍微簡(jiǎn)單但精度較低,,即測(cè)量 Voc 并將恒壓起始點(diǎn)設(shè)置為測(cè)得的 Voc 值乘以 0.75。該方法算出的點(diǎn)通常不是最初曲線的最大功率點(diǎn),,但是比較接近,。當(dāng)曲線發(fā)生變化時(shí),IC 算法將跟蹤至新曲線的實(shí)際最大功率點(diǎn),。
選擇 Vinc 值時(shí),,您需要考慮多種因素,比如光伏器件的功率范圍,、天氣變化,、理想的跟蹤速率和期望的最大功率點(diǎn)精度。選擇的 Vinc 值越大,,跟蹤最大功率點(diǎn)的速度越快,;選擇的 Vinc 值越小,測(cè)得的最大功率點(diǎn)越精確,。dI 的幅度也可提供與最大功率點(diǎn)距離的信息,。為了加快最大功率跟蹤速度,您可以用變化幅度乘以 Vinc 值,,來(lái)更高效地執(zhí)行最大功率跟蹤,。如果 dI 值較大,則可以選擇較大的 Vinc,,因?yàn)槟谰嚯x最大功率點(diǎn)還比較遠(yuǎn),。反之亦然:如果 dI 值較小,則應(yīng)使用較小的 Vinc,,因?yàn)橹恍枰稽c(diǎn)變化即可找到最大功率點(diǎn),。
基礎(chǔ)比較
在對(duì)執(zhí)行 ICE 算法的結(jié)果進(jìn)行測(cè)試和分析之前,我們先將這種算法與其他算法做個(gè)比較,。用來(lái)進(jìn)行比較的算法是“擾動(dòng)觀察”算法(P&O),。P&O 可能是最直觀的最大功率點(diǎn)跟蹤算法;它被認(rèn)為是最大功率點(diǎn)跟蹤的粗略近似算法,。P&O 方法是從曲線上的當(dāng)前位置(我們稱之為原點(diǎn))稍微移動(dòng)到原點(diǎn)旁的新位置,,然后在新位置上進(jìn)行電壓和電流測(cè)量并計(jì)算出功率。之后比較計(jì)算出的功率電平和原點(diǎn)的功率電平,。如果新位置上的功率比原點(diǎn)上的功率高,,那么應(yīng)向 MPP 移動(dòng),當(dāng)前位置現(xiàn)在就變成了原點(diǎn)。如果當(dāng)前位置的功率低于原點(diǎn)的功率,,那么應(yīng)背向 MPP 移動(dòng),。隨后在原點(diǎn)的另一邊重復(fù)上述步驟。如果原點(diǎn)的功率高于與其緊鄰的兩個(gè)點(diǎn)的功率,,則原點(diǎn)便是 MPP,。測(cè)試特定的最大功率點(diǎn)跟蹤算法時(shí),經(jīng)常使用 P&O 最大功率點(diǎn)跟蹤算法作為比較的標(biāo)準(zhǔn),。關(guān)于執(zhí)行 P&O 算法及其缺陷的更多信息,,請(qǐng)參見(jiàn)“Comparative Study of Maximum Power Point Tracking Algorithms(最大功率點(diǎn)跟蹤算法的比較研究)”一文。 [1].
ICE 性能結(jié)果
我們可以使用兩種算法進(jìn)行性能測(cè)試,。兩個(gè)主要的測(cè)試標(biāo)準(zhǔn)分別是最大功率點(diǎn)跟蹤的速度和精度,。使用尋找 MPP 時(shí)進(jìn)行的 I/O 處理次數(shù)(測(cè)量結(jié)果和 CV 變化)計(jì)算 MPP 的速度,因?yàn)?I/O 時(shí)延比執(zhí)行其他任何操作(比如數(shù)學(xué)計(jì)算)所用的時(shí)間都要多,。我們使用 Agilent N3300A 直流電子負(fù)載作為最大功率點(diǎn)跟蹤器,,來(lái)完成此項(xiàng)性能測(cè)試。為了仿真光伏器件輸出,,我們使用了 Agilent E4360A 模塊化太陽(yáng)能電池陣列仿真器(SAS),。該 SAS 的 I-V 曲線輸出是根據(jù)光伏板而生成的,光伏板在 1000 W/m^2 的輻照源及常溫 25℃的條件下可達(dá)到以下技術(shù)指標(biāo):
MPP = 130.6 W Voc = 25 V Isc = 7.9 A Vmp = 19.2 V Imp = 6.8 A
使用以上 I-V 曲線技術(shù)指標(biāo),,我們可以根據(jù)不同的輻照等級(jí)和溫度值創(chuàng)建出 17 條 I-V 曲線,,并將這些曲線存儲(chǔ)在 SAS中。我們使用 Agilent VEE 編程語(yǔ)言創(chuàng)建執(zhí)行每種算法的程序,。因此在運(yùn)行算法之前,,我們已經(jīng)確定了程序發(fā)送和接收電子負(fù)載測(cè)量結(jié)果所需的平均時(shí)延,以及調(diào)節(jié)電子負(fù)載 CV 設(shè)置所需的時(shí)間,。為了保證良好的電壓和電流測(cè)試精度,,測(cè)量應(yīng)間隔 16.67 毫秒,以消除交流線路中的功率噪聲,。執(zhí)行測(cè)量所需的平均時(shí)間是 43 毫秒。進(jìn)行恒壓調(diào)節(jié)的平均時(shí)間為 3.4 毫秒,。在每次負(fù)載變化以后,,我們?cè)黾?10 毫秒的設(shè)置時(shí)間,所以一個(gè)完整的 CV 變化平均耗時(shí) 13.4 毫秒,。為了提高速度,, IC 算法使用了兩種電壓步長(zhǎng):100 mV 和 800 mV。步長(zhǎng)取決于 ?P 或 ?I 的幅度,。P&O 算法使用了 100 mV 的電壓步長(zhǎng),。我們使用上述兩種算法進(jìn)行測(cè)試,并測(cè)量找到 17 條I-V 曲線的最大功率點(diǎn)所用的時(shí)間和最大功率點(diǎn)的精度。請(qǐng)?jiān)趫D 3 中查看測(cè)試結(jié)果,。
圖 3. 最大功率點(diǎn)跟蹤測(cè)試結(jié)果
|
平均最大功率點(diǎn)跟蹤時(shí)間 |
平均最大功率點(diǎn)誤差 |
|||
擾動(dòng)觀察法 |
607.3 msec |
0.09 W |
|||
改進(jìn)的電導(dǎo)增量法 |
437.5 msec |
0.08 W |
|||
|
|
|
|
||
ICE 算法具有良好的最大功率點(diǎn)跟蹤精度,,平均誤差只有 80 mW。當(dāng)然,,您能夠通過(guò)縮短電壓步長(zhǎng)(這會(huì)降低跟蹤速度)來(lái)控制精度,。ICE 比 P&O 的速度快了39%。在本測(cè)試實(shí)例中,,我們使用了兩種電壓步長(zhǎng),,但可以通過(guò)增加程序中電壓步長(zhǎng)大小來(lái)加快算法的執(zhí)行速度,從而根據(jù)變化的幅度進(jìn)行選擇,。增加電壓步長(zhǎng)的開(kāi)銷很小,,而且在程序中增加幾個(gè)“if/else”命令即可。
總結(jié)
目前針對(duì)逆變器實(shí)施和執(zhí)行各種最大功率點(diǎn)跟蹤算法,,有很多信息資源可供參考,。但是光伏測(cè)試系統(tǒng)的 I/O 速度和用途不同于逆變器。鑒于以上差異,,本文介紹了一種非常適用于通過(guò)電子負(fù)載執(zhí)行最大功率點(diǎn)跟蹤的最大功率點(diǎn)跟蹤算法,。ICE 算法執(zhí)行簡(jiǎn)單,并提供良好的最大功率點(diǎn)跟蹤速度和精度,,其最大優(yōu)點(diǎn)是可以通過(guò)調(diào)整電壓步長(zhǎng)和創(chuàng)建多種電壓步進(jìn)(可根據(jù)不同曲線間的變化幅度進(jìn)行選擇)來(lái)調(diào)諧最大功率點(diǎn)跟蹤精度和速度,,從而滿足您的需求。有關(guān)各種最大功率點(diǎn)跟蹤算法的更多信息,,請(qǐng)參閱論文 [1] 和 [3],。
參考文獻(xiàn):
Trishan Esram and Patrick L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques” http://www.simosolar.com/uploadfile/learn/uploadfile/200904/20090417030623524.pdf K. H. Hussein, I. Muta, T. Hoshino, M. Osakada, “Maximum Photovoltaic Power Tracking: an Algorithm for Rapidly Changing Atmospheric Conditions” http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=342237&tag=1 D. P. Hohm and M. E. Ropp, “Comparative Study of Maximum Power Point Tracking Algorithms” http://www3.interscience.wiley.com/journal/100519851/abstract. 2002.