《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計(jì)應(yīng)用 > NC仿真軟件在切削加工的應(yīng)用
NC仿真軟件在切削加工的應(yīng)用
中國自動(dòng)化網(wǎng)
摘要: 虛擬機(jī)械加工技術(shù)(Virtualmachining)已誕生很久了,,隨著科學(xué)技術(shù)的進(jìn)步,,三維計(jì)算機(jī)輔助設(shè)計(jì)被廣泛應(yīng)用于產(chǎn)品設(shè)計(jì),,在工程作業(yè)設(shè)計(jì)、加工工序設(shè)計(jì)及產(chǎn)品組裝程度等方面,,需要開發(fā)計(jì)算機(jī)輔助技術(shù),,特別是在計(jì)算機(jī)輔助工程(CAE)方面,采用有限元法(FEM)來預(yù)先解析研究與產(chǎn)品性能相關(guān)聯(lián)的構(gòu)造,、熱傳導(dǎo)性以及利用計(jì)算機(jī)輔助制造(CAM)確定刀具運(yùn)動(dòng)軌跡的編程技術(shù),,均已滲透到工程的各個(gè)領(lǐng)域而
Abstract:
Key words :

虛擬機(jī)械加工技術(shù)(Virtual machining)已誕生很久了,隨著科學(xué)技術(shù)的進(jìn)步,,三維計(jì)算機(jī)輔助設(shè)計(jì)被廣泛應(yīng)用于產(chǎn)品設(shè)計(jì),,在工程作業(yè)設(shè)計(jì)、加工工序設(shè)計(jì)及產(chǎn)品組裝程度等方面,,需要開發(fā)計(jì)算機(jī)輔助技術(shù),,特別是在計(jì)算機(jī)輔助工程(CAE)方面,采用有限元法(FEM)來預(yù)先解析研究與產(chǎn)品性能相關(guān)聯(lián)的構(gòu)造,、熱傳導(dǎo)性以及利用計(jì)算機(jī)輔助制造(CAM)確定刀具運(yùn)動(dòng)軌跡的編程技術(shù),,均已滲透到工程的各個(gè)領(lǐng)域而被有效利用。

切削加工仿真技術(shù)的發(fā)展動(dòng)向包括兩個(gè)方面,,其一是開發(fā)NC仿真軟件,,借以顯示刀具運(yùn)動(dòng)軌跡,并判斷刀具,、刀夾與工件及其夾具是否產(chǎn)生干涉,。

在進(jìn)行立銑加工時(shí),最基本的任務(wù)是切除刀具切削刃包絡(luò)面通過部分的被加工材料,,使保留下來的部分成為已加工面,。完成這類加工所用的軟件應(yīng)包括如下內(nèi)容:刀具、刀具夾頭,、工件,、夾具等的協(xié)調(diào),機(jī)床主軸的構(gòu)成及其可工作的范圍,,能真實(shí)地仿真機(jī)床和刀具的動(dòng)作等,。特別是近幾年來,由于五坐標(biāo)切削加工的不斷增加,,在實(shí)際加工前應(yīng)進(jìn)行NC仿真的重要性日益突出,。這類NC仿真軟件中,有不少軟件具有極為優(yōu)異的性能,,如可從金屬切除體積計(jì)算出加工效率,;根據(jù)金屬切除體積來判斷切削加工是否產(chǎn)生過載;如果負(fù)荷固定,,由于進(jìn)給速度過高而產(chǎn)生過載,,仿真軟件可調(diào)整進(jìn)給速度,,防止過載產(chǎn)生,并可縮短切削加工時(shí)間等,。

切削加工仿真技術(shù)的另一發(fā)展動(dòng)向是研究解析切削加工過程中的物理現(xiàn)象,,如被加工材料因塑性變形而產(chǎn)生熱量,被切除材料不斷擦過刀具前刀面形成刀屑后被排出,,以及由刀具切削刃切除不需要的材料而在工件上形成已加工面等,,并將這一系列切削過程通過計(jì)算機(jī)模擬出來,目前,,能達(dá)到這種理想目標(biāo)的產(chǎn)品還為數(shù)不多,。Third Wave Systems公司的“AdvantEdge”是采用有限元法對(duì)切削加工進(jìn)行特殊優(yōu)化解析的軟件產(chǎn)品,與用于構(gòu)造解析的有限元法程序包比較,,其最大優(yōu)點(diǎn)是用戶界面優(yōu)良,,機(jī)械加工的技術(shù)人員能方便地進(jìn)行解析。美國Scientific Forming Technologies公司的“DEFORM”是鍛造等塑性變形加工用有限元法解析程序包,,最近已被轉(zhuǎn)用于切削加工,。

切削過程是切屑,、被加工材料的彈性變形和塑性變形的變形過程,,與沖壓、鍛造等塑性變形比較,,變形速度(單位時(shí)間產(chǎn)生的變形量)非常大,,由此產(chǎn)生的塑性變形能量和前刀面上由摩擦產(chǎn)生的能量將引起發(fā)熱,從而使溫度大幅度升高,,刀尖在連續(xù)而狹小的范圍使被加工材料破壞,、分離成切屑和已加工面等,這是切削過程的顯著特征,。而這些現(xiàn)象彼此間存在復(fù)雜的相互影響,。

如果用有限元解析方式,需輸入下列內(nèi)容:被加工材料特性及摩擦狀態(tài)等物理特性,;切削條件及刀具形狀等邊界條件,。通過有限元解析剛性方程,可輸出切削力,、剪切角,、切削溫度等帶有切屑生成狀態(tài)特征的量化參數(shù),在此過程中,,無需建立數(shù)學(xué)模型或提出假設(shè),。根據(jù)有限元解析的結(jié)果,還易于將切屑生成過程,、應(yīng)力,、變形等物理量實(shí)現(xiàn)可視化,。

要獲得高精度解析結(jié)果,最為重要的輸入內(nèi)容是反映被加工材料應(yīng)力——變形關(guān)系的材料特性,,而材料特性的獲取是極為費(fèi)力的工作,。今后,隨著計(jì)算機(jī)功率的增大,,這種切削過程的物理仿真技術(shù)將會(huì)逐漸普及,。能否迅速普及的關(guān)鍵在于能否及時(shí)向用戶提供所需的被加工材料的材料特性。

按需開發(fā)切削加工仿真技術(shù)軟件,。目前,,許多科技人員正在進(jìn)行生產(chǎn)工程中最基礎(chǔ)的切削加工技術(shù)的研究,其中多數(shù)研究的目的是在弄清楚加工現(xiàn)象的同時(shí),,對(duì)加工過程進(jìn)行預(yù)測,。如果這些研究內(nèi)容實(shí)現(xiàn)了系統(tǒng)的計(jì)算機(jī)軟件化,就意味著能形成一個(gè)切削仿真技術(shù)軟件,。如東京農(nóng)工大學(xué)機(jī)械學(xué)院的實(shí)驗(yàn)室就正在進(jìn)行幾種預(yù)測性的有關(guān)切削加工仿真技術(shù)軟件的研究,。工藝流程和實(shí)用仿真采用了橫向和縱向相匹配的研究體系,橫向與產(chǎn)品設(shè)計(jì)到加工工序相對(duì)應(yīng),;在縱向上越往上,,實(shí)用性越好,往下則不僅是實(shí)用性,,還包括加工現(xiàn)象的解析和實(shí)現(xiàn)可視化,。

一、刀具信息數(shù)據(jù)庫和解析仿真技術(shù)并用的切削條件選擇系統(tǒng)

在實(shí)際的切削過程中,,不應(yīng)照搬工具廠提供的推薦切削條件,,而應(yīng)根據(jù)機(jī)床、工具系統(tǒng),、工件裝卡等具體情況,,反復(fù)進(jìn)行試切削來修正切削條件。同時(shí)還應(yīng)將過去加工中積累的行之有效的參考數(shù)據(jù)輸入數(shù)據(jù)庫,,在有效利用這些數(shù)據(jù)的同時(shí),,借助解析方法使切削條件達(dá)到最佳化;對(duì)于沒有參考數(shù)據(jù)的新的切削加工,,則應(yīng)開發(fā)與此相關(guān)的切削條件選擇系統(tǒng),。該系統(tǒng)中把振動(dòng)、加工精度,、刀具升溫,、刀具壽命、殘余應(yīng)力等設(shè)定為解析內(nèi)容,在解析的基礎(chǔ)上,,就能選擇出最佳的刀具和調(diào)整切削條件,。

本系統(tǒng)的數(shù)據(jù)大致分為三個(gè)部分:刀具信息數(shù)據(jù)、工具系統(tǒng)組成,、切削條件,。在切削條件中可積累有效的切削加工技術(shù)參數(shù)。
本文擬用圖例表示平頭立銑刀加工的最佳銑削效率和最佳化側(cè)面的形狀誤差,。根據(jù)數(shù)據(jù)庫選擇所需刀具和刀夾,,預(yù)測由立銑刀和刀夾的彎曲度及卡頭和主軸錐度結(jié)合部分的旋轉(zhuǎn)變化所導(dǎo)致的加工誤差。切削力的預(yù)測采用刀尖處的切削力乘以比切削抗力的模式,。這是一種最簡便的的方法,,但卻得到了切削力波形與實(shí)測值一致的良好結(jié)果。計(jì)算出每一瞬間由切削力引起的刀具撓曲量,,將其和形成已加工面的切削刃位置的位移相連就能得到已加工面的形狀,。與大規(guī)模有限元法的計(jì)算比較,計(jì)算時(shí)間是非常少的,,輸入刀具信息和切削條件信息,,就能容易地仿真加工誤差。
盡管數(shù)據(jù)庫里已具有確實(shí)適應(yīng)的切削加工條件,,人們?nèi)韵MM(jìn)一步減少加工誤差,,提高加工效率。實(shí)例表明,,用這種仿真和實(shí)現(xiàn)最佳化方式來修正切削條件是完全可能的,。
二、立銑刀加工時(shí)的刀具溫度
近年來,,高速銑削已很普遍,由經(jīng)驗(yàn)得知,,它適用于小切深,、大進(jìn)給的銑削條件,而把握最佳條件卻相當(dāng)困難,。銑削加工與車削加工不同,,前者屬于斷續(xù)切削,在加工過程中,,刀具升溫和冷卻高速地反復(fù)進(jìn)行,。由于熱傳導(dǎo)給刀具——切屑接觸部分是斷續(xù)進(jìn)行的,必須根據(jù)這一特征來解析刀具溫度的變化,。熱傳導(dǎo)量對(duì)預(yù)測精度影響很大,,但不需要對(duì)切屑生成狀態(tài)的變形和熱解析相聯(lián)系進(jìn)行大規(guī)模計(jì)算,因此可快速獲得解析結(jié)果。切削速度,、切深,、進(jìn)給的組合將影響最高溫度,當(dāng)加工效率一定時(shí),,提高進(jìn)給速度,,刀具溫度就會(huì)降低,溫度降低往往會(huì)使進(jìn)給速度的提高達(dá)到極限,,而提高進(jìn)給速度,,加工表面就會(huì)變得粗糙。因此,,如果能很好地平衡粗糙度和溫度的關(guān)系,,就能夠選擇到兩者相互平衡的切削條件。
三,、用有限元法進(jìn)行切削過程的物理仿真
在用有限元法進(jìn)行切削過程的物理仿真中,,作為切削條件輸入的內(nèi)容包括:切削速度、切削厚度,、刀具前角,、刀具后角、工件材料特性等,。對(duì)這些參數(shù)進(jìn)行解析后,,就能獲得切削力、切屑形狀,、刀具和切屑上的溫度分布,、應(yīng)力分布、形變分布,、殘余應(yīng)力分布等物理特性輸出結(jié)果,。
這種仿真對(duì)特殊切削狀態(tài)(如動(dòng)態(tài)切削)也是適用的。切削成波形表面的波形切除過程(wave removal)和刀具邊振動(dòng)邊切削的波形生成過程都顯示出在切屑厚度變薄的過程中,,剪切角變小,、變形集中而產(chǎn)生大的變形。在這樣的動(dòng)態(tài)切削過程中,,剪切角發(fā)生變化,,與此相對(duì)應(yīng)的是切屑生成的變形范圍大小也發(fā)生變化,因此切削力與刀尖的切削厚度不成正比,。由與刀尖切削厚度的變動(dòng)相對(duì)應(yīng)的剪切角度變化圖可知,,即使刀尖切削厚度相同,振幅增大時(shí)比振幅減小時(shí)的剪切角還大,,利薩如(Lissajou)圖形下方呈凸半月形,。根據(jù)這樣的解析結(jié)果,才能使現(xiàn)象的可視化及理解成為可能,從而開發(fā)出更為實(shí)用的高精度近似解析法,。
另外,,對(duì)于材料特性不同的復(fù)合金屬材料的切削加工,以及象超聲波振動(dòng)切削那樣的刀具在切削方向邊振動(dòng)邊斷續(xù)切削等加工,,均可采用物理仿真技術(shù)進(jìn)行解析,。由鐵素體和珠光體以層狀分布時(shí)的解析實(shí)例可知,由于各層分布的位置不同,,切屑卷曲的狀態(tài)有很大的差異,。如果在材料設(shè)計(jì)中能夠有效應(yīng)用物理仿真的解析結(jié)果,就有可能實(shí)現(xiàn)不依靠斷屑槽來進(jìn)行切屑處理,。在超聲波振動(dòng)切削中切削力減小,,是因?yàn)檎駝?dòng)切削的振動(dòng)頻率大大高于刀具——被加工材料系統(tǒng)固有振動(dòng)頻率。這種解析所獲得的切削力是斷續(xù)作用在刀具和切屑間的力,,假設(shè)沒有摩擦減小等其它因素的影響,,這種切削力和通常的切削是一樣的。

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。