近年來射頻微電子系統(tǒng)(RF MEMS)器件以其尺寸小,、功耗低而受到廣泛關(guān)注,,特別是MEMS開關(guān)構(gòu)建的移相器與天線,是實現(xiàn)上萬單元相控陣雷達的關(guān)鍵技術(shù),,在軍事上有重要意義,。在通信領(lǐng)域上亦憑借超低損耗、高隔離度,、成本低等優(yōu)勢在手機上得到應(yīng)用,。然而RF MEMS開關(guān)普遍存在驅(qū)動電壓高、開關(guān)時間長的問題,,劣于FET場效應(yīng)管開關(guān)和PIN二極管開關(guān),。相對于國外已取得的成果,國內(nèi)的研究尚處于起步階段,。下文將針對MEMS開關(guān)的缺陷做一些改進,。
1 RF MEMS開關(guān)的一般考慮
當MEMS開關(guān)的梁或膜受靜電力吸引向下偏移到一定程度時達到閾值電壓,梁或膜迅速偏移至下極板,,電壓大小取決于材料參數(shù),、開關(guān)尺寸及結(jié)構(gòu)。梁或膜的材料需要比較好的楊氏模量與屈服強度,,楊氏模量越大諧振頻率就越高,,保證工作的高速穩(wěn)定及開關(guān)壽命;尺寸設(shè)計上要考慮靜電驅(qū)動力的尺寸效應(yīng);結(jié)構(gòu)的固有振動頻率則影響開關(guān)的最高工作速度,。單從結(jié)構(gòu)上看,,降低驅(qū)動電壓的途徑為:降低極板間距;增加驅(qū)動面積,;降低梁或膜的彈性系數(shù),。常見的結(jié)構(gòu)有串、并聯(lián)懸臂梁開關(guān),、扭轉(zhuǎn)臂開關(guān)和電容式開關(guān),,前三者為電阻接觸式,金屬與信號線外接觸時存在諸如插入損耗大等很多問題,,而電容接觸式開關(guān)的絕緣介質(zhì)也存在被擊穿的問題,。有研究表明,所加電壓越高開關(guān)的壽命越短,,驅(qū)動電壓的降低勢必導致開關(guān)速度變慢,,如何同時滿足驅(qū)動電壓和開關(guān)速度的要求是當前的困難所在。
2 RIF MEMS開關(guān)的模擬與優(yōu)化
對于電容式開關(guān),,驅(qū)動電壓隨著橋膜長度的增加而下降,,橋膜殘余應(yīng)力越大驅(qū)動電壓也越大。通常把楊氏張量78 GPa,、泊松比O.44的Au作為橋膜材料,,為獲得好的隔離度要求開關(guān)有大的電容率,這里選介電常數(shù)為7.5的S3N4作為介質(zhì)層,,橋膜單元為Solid98,,加5 V電壓,電介質(zhì)為空氣,,下極板加O V電壓,。然后用ANSYS建模、劃分網(wǎng)格,、加載并求解靜電耦合與模態(tài)分析,。5 V電壓下的開關(guān)形變約為O.2 μm左右,尚達不到低壓驅(qū)動要求,。提取開關(guān)前五階模態(tài)如圖1所示,。
可見開關(guān)從低階到高階的共振頻率越來越大,分別為79.9 kHz,,130.3 kHz,,258.8 kHz,360.7 kHz,,505.6 kHz,,一階模態(tài)遠離其他模態(tài),,即不容易被外界干擾,只有控制開關(guān)頻率低于一階模態(tài)的諧振頻率才能保證其穩(wěn)定工作,。由于實際開關(guān)時間仍不理想,,所以在膜上挖孔以減小壓縮模的阻尼,從而增加開關(guān)速度,。雖然關(guān)態(tài)的電容比下降了,,但孔可以減輕梁的重量,得到更高的力學諧振頻率,。最終的模型共挖了100個孔,,并對兩端做了彎曲處理以降低驅(qū)動電壓,,仿真得到5 V電壓下形變?yōu)?μm以上,、穩(wěn)定的開關(guān)時間在5μs以下的電容式開關(guān),如圖2所示,。
考慮到電容式開關(guān)仍存在的介質(zhì)擊穿問題,,這里對其結(jié)構(gòu)加以改進,將扭轉(zhuǎn)臂杠桿與打孔電容膜相結(jié)合,,在減小驅(qū)動電壓和提高開關(guān)速度的同時,,又不影響電容比,一定程度上抑制了電擊穿,。其工作原理是:push電極加電壓時杠桿上抬,,介質(zhì)膜與接觸膜間距離增大導致其耦合電容很小,信號通過傳輸線,;pull電極加電壓時杠桿下拉,,耦合電容變大,微波信號被反射,。材料選擇上仍以Au和S3N4為主,,某些部分可用A1代替Au。結(jié)構(gòu)與尺寸的設(shè)計上由超越方程與開關(guān)通斷下的電容方程得到估計值,,下極板為25×25(單位制采用μMKSV,,長度單位為μm,下同),,其上附有絕緣介質(zhì)層,,孔為3.4×3.4,杠桿為100x30,,結(jié)構(gòu)層為20×20,,極板厚度為1。用ANSYS仿真得到圖3所示結(jié)果,。
在ANSYS做靜電耦合與模態(tài)分析后利用ANSOFT HFSS對該開關(guān)進行3D電磁場仿真,,進一步求得其插入損耗與隔離度,,確定共面波導和接觸膜的結(jié)構(gòu),從而完善開關(guān)的射頻性能,。建模時忽略開關(guān)的彎曲,,定義材料特性與空氣輻射邊界,利用wave port端口進行仿真,,分別求解開態(tài)的插入損耗和關(guān)態(tài)的隔離度,。介質(zhì)層較薄時,開關(guān)在10 GHz附近具有良好的隔離度,,且插入損耗在1 dB以下,。
3 RF MEMS開關(guān)的制備工藝
合理選擇生長介質(zhì)膜的工藝對開關(guān)性能有很大影響,本文的RF MEMS開關(guān)需要在基底表面生長一層氮化硅膜,,一般選擇LP-CVD工藝,,而介質(zhì)膜則選擇PECVD工藝為宜,金屬膜的性能要求相對較低,,用濺射方法即可,。考慮到基底要求漏電流與損耗盡可能小,,選取高阻硅與二氧化硅做基底,,后者保證了絕緣要求。金質(zhì)信號線與下極板通過正膠剝離形成,,電子束蒸發(fā)得到鋁質(zhì)上極板,。但從可行性考慮,部分方案的工藝實現(xiàn)對于國內(nèi)的加工工藝尚有難度,,只能犧牲微系統(tǒng)的性能來達到加工條件,。
4 結(jié)語
本文主要從結(jié)構(gòu)上進行了創(chuàng)新,通過計算機輔助設(shè)計仿真分析得到了理論解,,一定程度上滿足了設(shè)計初衷,,但在工藝上還不成熟。更低的驅(qū)動電壓和更高的開關(guān)頻率仍是亟待解決的問題,,另外如何保證實際產(chǎn)品的可靠性,、實用性也是未來的研究重點。