《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 一種無超調(diào)鈍角拐點(diǎn)的PlD溫控設(shè)計(jì)
一種無超調(diào)鈍角拐點(diǎn)的PlD溫控設(shè)計(jì)
李金堂,樊潤(rùn)潔
西安鐵路職業(yè)技術(shù)學(xué)院
摘要: 為解決某特種金屬熱處理的溫控工藝要求,,通過采用工控機(jī)組態(tài),、PLC控制、特殊的PID調(diào)節(jié)方法,,根據(jù)不同的溫升階段,,使系統(tǒng)自適應(yīng)調(diào)節(jié)PID參數(shù)并實(shí)時(shí)變更溫控功率的輸出比率,有效地克服了傳統(tǒng)PID控制器在溫控過程中,,因溫控惰性而出現(xiàn)的超調(diào)現(xiàn)象,,系統(tǒng)可完全依照用戶設(shè)定的溫控工藝曲線運(yùn)行,并全程實(shí)時(shí)控制,、記錄加溫過程,,嚴(yán)格執(zhí)行計(jì)劃曲線,尤其在變溫點(diǎn)的控制方面實(shí)現(xiàn)了既無欠溫又無超調(diào)鈍角拐點(diǎn)的控制效果,。通過對(duì)實(shí)際產(chǎn)品的金相組織檢測(cè),,徹底消除了以往由于過溫超調(diào)而造成的廢品現(xiàn)象。
Abstract:
Key words :


 

    隨著當(dāng)今工業(yè)生產(chǎn)的不斷發(fā)展,,在特種金屬熱處理的工藝要求中,,具有超調(diào)響應(yīng)的PID(Proportional Integral Derivative)溫控系統(tǒng)已不能滿足特殊生產(chǎn)的需求,它不僅需要在加熱過程中嚴(yán)格執(zhí)行預(yù)定的溫升曲線,,而且尤其注重溫度拐點(diǎn)的工藝控制,,必須做到既無欠溫而又無過溫的控制效果。欠溫時(shí)達(dá)不到預(yù)定的工藝要求,,而過溫可能會(huì)造成加熱工件的晶粒組織形成永久性的破壞而導(dǎo)致產(chǎn)生廢品,。在金屬加熱溫度控制系統(tǒng)中,由于加熱源與被加熱對(duì)象之間控制惰性的客觀存在,,在系統(tǒng)噪聲,、負(fù)載擾動(dòng)等時(shí)變不確定性的影響下,,若要求加熱工藝過程實(shí)時(shí)準(zhǔn)確執(zhí)行預(yù)定溫度曲線,采用典型的PID控制思路是難以實(shí)現(xiàn)的,。在以往的生產(chǎn)過程中,,為防止超調(diào)過燒,在溫度的拐點(diǎn)處是以欠溫狀態(tài)為代價(jià)運(yùn)行的,,為追求產(chǎn)品的高質(zhì)量水平,,經(jīng)反復(fù)探索、研究,、實(shí)踐,,在應(yīng)用Siemens Smatic S7-200 PLC的PID指令的基礎(chǔ)上,通過實(shí)踐新型PID自適應(yīng)控制理論,,對(duì)不同溫度段PID各參數(shù)的適時(shí)變更,、調(diào)節(jié),突破了欠溫與超調(diào)相互制約的矛盾,,達(dá)到了與系統(tǒng)預(yù)定的升溫曲線相一致的控制結(jié)果,。

1 系統(tǒng)組成簡(jiǎn)介
    系統(tǒng)設(shè)備的基本組成如圖l(a)所示,具體控制過程為:在工控機(jī)組態(tài)軟件的支持下,,通過人機(jī)界面的交互輸入或修改預(yù)定的工件加熱溫升曲線,,系統(tǒng)的人機(jī)界面如圖l(b)所示,生產(chǎn)過程的操作均通過人機(jī)界面上相應(yīng)指示實(shí)施,。設(shè)備運(yùn)行后,,PLC將依照組態(tài)預(yù)定的溫升曲線,對(duì)變頻電源的功率輸出進(jìn)行實(shí)時(shí)PID調(diào)節(jié),,從而控制感應(yīng)加熱設(shè)備對(duì)工件加熱,,工件的實(shí)時(shí)溫度則又由紅外測(cè)溫儀采樣后反饋至PLC形成溫度閉環(huán)。系統(tǒng)運(yùn)行過程的實(shí)時(shí)數(shù)據(jù)及現(xiàn)場(chǎng)設(shè)備的運(yùn)行狀態(tài)信息,,均由相應(yīng)的傳感器件傳送到PLC和工控機(jī)實(shí)施數(shù)據(jù)采集記錄,、報(bào)警提示等智能化控制,所有操作均可通過人機(jī)界面實(shí)現(xiàn),。

12z.jpg

2 無超調(diào)PID溫控設(shè)計(jì)
2.1 SIEMENS PLC中PID指令算法
    在西門子PLC中,,由于其PID算法是一種經(jīng)典的PID算法,原理上與自動(dòng)化儀表的控制思想是一致的,。其PID控制結(jié)構(gòu)如圖2所示,,輸入輸出關(guān)系為:
    b.JPG
    圖2中,Sv(t)是輸入量(給定值),,Pv(t)是反饋量,,C(t)為輸出量。偏差值ev(t)=Sv(t)-Pv(t);mv(t)是PID調(diào)節(jié)器的輸出信號(hào),。Kp是調(diào)節(jié)器的比例系數(shù),,Mintial是PID回路輸出的初始值,PLC可編程控制器在對(duì)被控量PID調(diào)節(jié)時(shí)將PID公式離散化后,,在系統(tǒng)的采樣周期為Ts時(shí),,用矩形積分近似精確積分;用差分近似精確微分,,將PID公式離散化,,則第n次采樣時(shí)控制器的輸出為:
   c.JPG

 

d.JPG
    由于在實(shí)際的生產(chǎn)過程中要執(zhí)行的溫升曲線是圖3(a)所示的工藝要求,Sv(t)輸入量(給定值)在溫升階段期間,。系統(tǒng)在采樣周期Ts的作用下是按階梯量的形式給定的,這就相當(dāng)于每次給定的是一階躍函數(shù)加n-1次的偏差值ev之和,,因而,,在實(shí)施PID做溫度調(diào)節(jié)時(shí)出現(xiàn)溫度超調(diào)振蕩的現(xiàn)象是難免的,控制結(jié)果如圖3(b)所示,。因而,,經(jīng)典的PID控制結(jié)果是不能滿足圖3(a)的控制需求。
2.2 在實(shí)踐中對(duì)該P(yáng)ID溫控算法所做的設(shè)計(jì)改進(jìn)
2.2.1 引入積分分離PID控制算法
    積分分離PID控制算法是一種遇限消弱積分項(xiàng)的PID算法,,對(duì)消除系統(tǒng)超調(diào)非常有效,。其方法如下:根據(jù)實(shí)際調(diào)試情況,人為設(shè)定一閾值ε(ε>0),;當(dāng)偏差值|ev(n)|>ε時(shí),,采用PD控制,既可避免過大的超調(diào)又可使系統(tǒng)有較快的響應(yīng),;當(dāng)偏差值|ev(n)|≤ε時(shí),,采用正常的PID控制,以便保證系統(tǒng)的控制精度,。這就需要在辨識(shí)決策環(huán)節(jié)中引入一積分項(xiàng)的控制系數(shù)β,,β按下述條件取值。
    e.JPG
    引入積分項(xiàng)的控制系數(shù)β后,,第n次采樣時(shí)控制器的輸出為:
    f.JPG
2.2.2 引入帶死區(qū)的PID控制算法
    在實(shí)際的控制系統(tǒng)中,,采樣周期Ts為100 ms。為避免控制動(dòng)作的過于頻繁而引起的振蕩,。引入了帶死區(qū)的PID控制,,其控制框圖如圖4所示。相應(yīng)的控制算式為:
   g.JPG

h.JPG
    式中,,死區(qū)evo是一個(gè)可調(diào)參數(shù),,其具體數(shù)值則根據(jù)實(shí)際調(diào)試情況而定,evo數(shù)值越小,控制動(dòng)作越頻繁,,達(dá)不到穩(wěn)定被控對(duì)象的目的,;evo數(shù)值越大,則系統(tǒng)產(chǎn)生較大滯后,,根據(jù)實(shí)際調(diào)試結(jié)果,,在該溫控系統(tǒng)中evo=2.0℃。
    在引入死區(qū)控制的同時(shí),,本系統(tǒng)還設(shè)定了偏差值ev(n)大于某一上限定值ev(h)時(shí)則按比率認(rèn)可ev(n)的數(shù)值,,以此來限定由瞬間擾動(dòng)產(chǎn)生的控制波動(dòng),此方法對(duì)保證系統(tǒng)控制的穩(wěn)定性簡(jiǎn)潔有效,。
2.2.3 引入微分先行的PID控制算法
    微分先行的PID控制算法的特點(diǎn)是只對(duì)輸出量C(n)進(jìn)行微分,,而對(duì)給定值Sv(n)不作微分,因而,,在改變給定值時(shí),,輸出穩(wěn)定(微分項(xiàng)不參與)使被控量的變化比較緩和,這種輸出量微分先行的控制算法非常適應(yīng)與給定值頻繁變化的場(chǎng)合,,可以有效地抑制因給定值變化而引起的系統(tǒng)振蕩,。在本項(xiàng)目中,正是考慮到在溫度上升階段時(shí)在采樣周期Ts的控制下每次的給定值都存在階躍變化,,因而引入微分先行的控制算法可明顯改善系統(tǒng)的動(dòng)態(tài)特性,。微分先行的控制算式:
    i.JPG
2.2.4 引入居里點(diǎn)溫度檢測(cè)的PID變參量控制算法
    由于本系統(tǒng)的加熱源采用的是電磁感應(yīng)加熱方式,在此方式下,,當(dāng)金屬加熱到居里點(diǎn)以上溫度時(shí),,由于導(dǎo)磁率的急劇變化將使加熱效率亦產(chǎn)生較大的變化,因此,,在PID控制中,,相應(yīng)的比例參數(shù)Kp、積分參數(shù)Ki,、和微分參數(shù)Kd也將隨之相應(yīng)的變動(dòng),,變動(dòng)量的大小根據(jù)加熱工件的材質(zhì)、尺寸,、生產(chǎn)節(jié)拍均成函數(shù)關(guān)系,。另一方面,為保證控制效果無超調(diào)并形成鈍角的拐點(diǎn),,對(duì)系統(tǒng)的輸出量mv(n)也需進(jìn)行比例輸出,,本參數(shù)的變動(dòng)量也是一與工件加熱工藝關(guān)聯(lián)的函數(shù),其數(shù)值的優(yōu)化需在調(diào)試中確定,。
2.2.5 改進(jìn)后的PID控制算法綜述
    根據(jù)本項(xiàng)目溫控工藝要求的特點(diǎn),,在基于傳統(tǒng)PID算法的理念下,經(jīng)上述改進(jìn)使該系統(tǒng)成為一具有一定自適應(yīng)能力的系統(tǒng),它能夠識(shí)別環(huán)境條件的變化,,并自動(dòng)校正PID控制參量,,這與傳統(tǒng)的PID控制算法的顯著區(qū)別在于它具有“辨識(shí)→決策→修改”的功能,即不間斷地采樣系統(tǒng)(被控對(duì)象)的階段狀態(tài)參數(shù)并加以辨識(shí)后與系統(tǒng)事先給定的準(zhǔn)則相比較后實(shí)時(shí)決策,、修改PID的算法,,以使系統(tǒng)不斷地趨向最理想的控制效果。改進(jìn)后的PID算法的系統(tǒng)框圖如圖5所示,。

j.JPG

3 無超調(diào)PID溫控設(shè)計(jì)性能指標(biāo)
    無超調(diào)PID溫控設(shè)計(jì)的主要性能指標(biāo):從自控理論上講,,本系統(tǒng)的溫控本質(zhì)屬于非線性系統(tǒng),時(shí)域上的不確定因素復(fù)雜多變,,判斷其性能指標(biāo)綜合體現(xiàn)在以下幾個(gè)通用的方面,。
3.1 穩(wěn)定性
    穩(wěn)定性是對(duì)控制系統(tǒng)的基本要求,按自適應(yīng)PID控制算法系統(tǒng)的穩(wěn)定性要求是指系統(tǒng)的狀態(tài),、輸入,、輸出和參數(shù)等變量在各種條件的變動(dòng)下總是有界的,即控制算法的校正下,,誤差經(jīng)閉環(huán)調(diào)節(jié)后有界收斂。本系統(tǒng)中,,可編程控制器采用的是Siemens Smatic S7-200 PLC,,系統(tǒng)中的相關(guān)變量均做過歸一化處理,即數(shù)字量的引用均標(biāo)準(zhǔn)化在0.0~1.0之間,,因而,,在系統(tǒng)溫控過程中是收斂有界的,同時(shí),,在對(duì)實(shí)時(shí)數(shù)據(jù)的檢測(cè),、辨識(shí)、決策過程中,,在程序內(nèi)對(duì)所有參量均設(shè)有上下限的識(shí)別,,從而有效保證了執(zhí)行結(jié)果的穩(wěn)定。
3.2 可維性
    本系統(tǒng)的可維性主要指的是軟件維護(hù)及操作者應(yīng)用的便利程度,,因在實(shí)際生產(chǎn)過程中,,產(chǎn)品的規(guī)格、型號(hào)是多樣化的,,因而,,在溫控過程中與之相對(duì)應(yīng)的PID參數(shù)亦需要相應(yīng)的變動(dòng)。在該系統(tǒng)中的人機(jī)界面中,,通過控制組態(tài),,由操作者輸入產(chǎn)品的規(guī)格編號(hào)后,在控制組態(tài)中自動(dòng)調(diào)用配方數(shù)據(jù)來初始化PID的基礎(chǔ)參數(shù);另一方面,,本系統(tǒng)的軟件無論是組態(tài)編程還是PLC編程,,均采用模塊化結(jié)構(gòu),因而,,系統(tǒng)程序的修改,、維護(hù)極為便利。依照自控系統(tǒng)的一般規(guī)則,,系統(tǒng)運(yùn)行的過程數(shù)據(jù)均實(shí)時(shí)采集,、記錄到數(shù)據(jù)庫中,可實(shí)時(shí)為產(chǎn)品生產(chǎn)加工質(zhì)量的追溯提供源資料,。
3.3 魯棒性(Robust)
    如前所述,,本溫控系統(tǒng)的被控對(duì)象是電磁感應(yīng)加熱源的功率輸出,在實(shí)際的現(xiàn)場(chǎng)環(huán)境中,,電磁場(chǎng)強(qiáng)的干擾及各類機(jī)電設(shè)備的運(yùn)行對(duì)PID控制均存在種種已知或未知的擾動(dòng),,解決此方面的問題除了在硬件上要采取相應(yīng)的措施外,在PID溫控的設(shè)計(jì)方面,,通過應(yīng)用上述各種參量限定辨識(shí)后,,在實(shí)際的生產(chǎn)運(yùn)行中均保證了系統(tǒng)的工作穩(wěn)定,在相鄰機(jī)電設(shè)備或變頻電源的啟停擾動(dòng)下不敏感,。

4 結(jié)論
4.1 無超調(diào)PID沮控實(shí)驗(yàn)效果
    經(jīng)上述改進(jìn)后的PID控制算法在實(shí)際生產(chǎn)過程的運(yùn)行中有效解決了原溫控的難點(diǎn),,其控制效果如圖6所示。圖6(a)的曲線是采用改進(jìn)PID溫控算法前的溫控曲線,,圖6(b)的溫控曲線是本文所論述的PID算法所實(shí)時(shí)記錄的溫控效果,,其中難得的是在變溫拐點(diǎn)處的控制為理想的鈍角,整體溫控效果與預(yù)定的溫度趨向基本吻合,,在實(shí)際生產(chǎn)過程中與以往相比,,既避免了因欠溫而造成的返工現(xiàn)象,又消除了因過溫產(chǎn)生的廢品,,有效地提高了產(chǎn)品熱處理的質(zhì)量,。

k.JPG
4.2 無超調(diào)PID溫控的設(shè)計(jì)結(jié)論
    現(xiàn)代控制理論中,在經(jīng)典PID控制理論的基礎(chǔ)上衍生的控制理念層出不窮,,諸如神經(jīng)元,、神經(jīng)網(wǎng)絡(luò)、模糊PID控制算法等比比皆是,,但若要在生產(chǎn)實(shí)踐中選取理想的控制算法,,就必須通過工程實(shí)際進(jìn)行反復(fù)地調(diào)整和修改,不拘泥于理論參數(shù)或方法限制,,根據(jù)工程經(jīng)驗(yàn),,直接在控制系統(tǒng)的試驗(yàn)中進(jìn)行篩選組合出適合實(shí)際的控制算法,,使系統(tǒng)達(dá)到最優(yōu)化的運(yùn)行狀態(tài)。雖然在本項(xiàng)目的PID算法取得了預(yù)期的效果,,但實(shí)際運(yùn)行在各溫度段的PID參數(shù)是在調(diào)試中獲取,,并針對(duì)各型號(hào)的產(chǎn)品規(guī)格在上位組態(tài)中以配方的形式給定,如此則使得前期調(diào)試頗為繁瑣,,因而,,在參量自適應(yīng)的智能化設(shè)計(jì)方面還有待于進(jìn)一步的探索與實(shí)踐。
 

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。