《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 電源技術(shù) > 設(shè)計應(yīng)用 > LTC4350自主均流法研究
LTC4350自主均流法研究
摘要: 多模塊電源系統(tǒng)并聯(lián)工作時,,為了保證模塊間電流應(yīng)力和熱應(yīng)力的均勻分配,,防止一個或多個電源模塊運行在電流極限值,,而采用并聯(lián)均流控制技術(shù),可以很好地滿足需要,。文中分析了LTC4350自主均流法的工作原理和性能特點,,采用LTC4350制作了兩塊實驗電源模塊,并讓其并聯(lián)工作,,做均流和熱插拔實驗,,達到了滿意的效果,。
Abstract:
Key words :

  引 言

  并聯(lián)的開關(guān)電源在模塊間通常需要采用均流措施,。它是實現(xiàn)大功率電源系統(tǒng)的關(guān)鍵,其目的在于保證模塊間電流應(yīng)力和熱應(yīng)力的均勻分配,,防止一臺或多臺模塊運行在自身的電流極限狀態(tài),。

  目前實現(xiàn)均流的方法有多種,而自主均流以其均流精度高,,動態(tài)響應(yīng)好,,容易實現(xiàn)冗余技術(shù)等特點,,而得到了廣泛的應(yīng)用。自主均流法自動設(shè)定主從電源模塊,,均流電路自動讓輸出電流最大的電源模塊成為主模塊,,其余的電源模塊則成為從模塊。

  1 LTC4350均流電路原理

  如圖1所示,,感應(yīng)電阻Rsense兩端壓降的高低,,代表了開關(guān)電源LTC1629輸出電流的大小,Rsense兩端電壓通過LTC4350內(nèi)部的Isense功能塊后轉(zhuǎn)化為測量電流輸出,,并在增益電阻Rgain兩端形成比較電壓,。此比較電壓接在內(nèi)部均流誤差放大器E/A2功能塊的反向輸入端,并與接在E/A2正向輸入端的均流母線電壓相比較,,如若不相等,,誤差電壓就會在內(nèi)部Iout功能塊變成電流IADJ輸出,IADJ就會在Rout兩端形成壓降,,從而影響LTC1629的sense輸入端電壓,,這樣,開關(guān)電源穩(wěn)壓器LTC1629就自動調(diào)整輸出電壓,,直到整個電源系統(tǒng)中所有LTC4350的GAIN引腳電壓等于均流母線SB引腳的電壓時,,負載電流被均勻分配了,也就達到了均流的目的,。

  

圖1 LTC4350自主均流原理示意圖

 

  圖1 LTC4350自主均流原理示意圖

  FB引腳外接反饋分壓電阻器,,并與LTC4350的內(nèi)部基準電壓比較,誤差電壓經(jīng)過內(nèi)部誤差放大器E/A1放大之后,,驅(qū)動均流母線SB,,如果FB引腳電壓小于或等于基準電壓,二極管D1正向?qū)?,E/A1輸出驅(qū)動SB,,若FB引腳電壓高于基準電壓,D1截止,,E/A1則與SB斷開,。具有最高基準電壓的LTC4350將驅(qū)動均流母線SB以及內(nèi)部與其相連的20KΩ負載電阻(每個20KΩ負載代表著一個LTC4350),使均流母線達到適當?shù)碾娏髦?。所有其他的LTC4350的COMP1引腳為低電位,,斷開與均流母線的連接。

  2 LTC4350軟硬故障及熱插拔保護

  電源輸出短接到地或輸出電壓異常高一般稱之為“硬故障”,,這類故障需要立即將損壞的電源模塊與負載斷開,。電源開路故障和負載電流分配故障一般稱之為“軟故障”,此時電源輸出電壓雖然正常,但多個電源模塊間電流分配不均,。為此,,需要在開關(guān)電源LTC1629和負載之間加上兩個功率MOSFET(M1 和M2 串聯(lián),如圖1所示),,在模塊出現(xiàn)“硬故障”和“軟故障”時,,隔離故障模塊。當電源LTC1629輸出短路,,Isense功能塊檢測到Rsense上的大于30mV的反向電壓并且超過5μs時,,外部功率MOSFET柵極電壓馬上降低而使M2 開路,斷開與負載的連接,,過壓保護通過0V引腳外接的電阻分壓網(wǎng)絡(luò)監(jiān)視電源輸出電壓,,一旦0V引腳電壓超過設(shè)定的1.22V閾值,則外部功率MOSFET的柵極電壓被拉低而使M1開路,,斷開與負載的連接,。

  當電源首先作用到UCC引腳時,功率MOSFET柵極電壓被拉低,,一旦UCC升高并大于設(shè)定的摘要:多模塊電源系統(tǒng)并聯(lián)工作時,,為了保證模塊間電流應(yīng)力和熱應(yīng)力的均勻分配,防止一個或多個電源模塊運行在電流極限值,,而采用并聯(lián)均流控制技術(shù),,可以很好地滿足需要。文中分析了LTC4350自主均流法的工作原理和性能特點,,采用LTC4350制作了兩塊實驗電源模塊,,并讓其并聯(lián)工作,做均流和熱插拔實驗,,達到了滿意的效果,。

  0 引 言

  由于大功率電源負載需求的增加以及分布式電源系統(tǒng)的發(fā)展,開關(guān)電源的并聯(lián)應(yīng)用技術(shù)日益重要,。但是并聯(lián)運行的各個開關(guān)電源模塊特性并不一致,,外特性好(電壓調(diào)整率小)的模塊可承擔更多的電流,甚至過載,,從而使某些外特性較差的模塊運行于輕載狀態(tài),,甚至基本上是空載運行。其結(jié)果必然加大了分擔電流多的模塊的熱應(yīng)力,,從而降低了可靠性,。但是并聯(lián)的開關(guān)電源在模塊間通常需要采用均流措施。它是實現(xiàn)大功率電源系統(tǒng)的關(guān)鍵,,其目的在于保證模塊間電流應(yīng)力和熱應(yīng)力的均勻分配,,防止一臺或多臺模塊運行在自身的電流極限狀態(tài)。

  目前實現(xiàn)均流的方法有多種,,而自主均流以其均流精度高,,動態(tài)響應(yīng)好,容易實現(xiàn)冗余技術(shù)等特點,,而得到了廣泛的應(yīng)用,。自主均流法自動設(shè)定主從電源模塊,均流電路自動讓輸出電流最大的電源模塊成為主模塊,,其余的電源模塊則成為從模塊,。

  1 LTC4350均流電路原理

  如圖1所示,感應(yīng)電阻Rsense兩端壓降的高低,,代表了開關(guān)電源LTC1629輸出電流的大小,,Rsense兩端電壓通過LTC4350內(nèi)部的Isense功能塊后轉(zhuǎn)化為測量電流輸出,并在增益電阻Rgain兩端形成比較電壓,。此比較電壓接在內(nèi)部均流誤差放大器E/A2功能塊的反向輸入端,,并與接在E/A2正向輸入端的均流母線電壓相比較,如若不相等,,誤差電壓就會在內(nèi)部Iout功能塊變成電流IADJ輸出,,IADJ就會在Rout兩端形成壓降,從而影響LTC1629的sense輸入端電壓,,這樣,,開關(guān)電源穩(wěn)壓器LTC1629就自動調(diào)整輸出電壓,直到整個電源系統(tǒng)中所有LTC4350的GAIN引腳電壓等于均流母線SB引腳的電壓時,,負載電流被均勻分配了,,也就達到了均流的目的。

  

圖1 LTC4350自主均流原理示意圖

 

  圖1 LTC4350自主均流原理示意圖

  FB引腳外接反饋分壓電阻器,,并與LTC4350的內(nèi)部基準電壓比較,,誤差電壓經(jīng)過內(nèi)部誤差放大器E/A1放大之后,驅(qū)動均流母線SB,,如果FB引腳電壓小于或等于基準電壓,,二極管D1正向?qū)ǎ珽/A1輸出驅(qū)動SB,,若FB引腳電壓高于基準電壓,,D1截止,E/A1則與SB斷開,。具有最高基準電壓的LTC4350將驅(qū)動均流母線SB以及內(nèi)部與其相連的20KΩ負載電阻(每個20KΩ負載代表著一個LTC4350),,使均流母線達到適當?shù)碾娏髦怠K衅渌腖TC4350的COMP1引腳為低電位,,斷開與均流母線的連接,。

  2 LTC4350軟硬故障及熱插拔保護

  電源輸出短接到地或輸出電壓異常高一般稱之為“硬故障”,這類故障需要立即將損壞的電源模塊與負載斷開。電源開路故障和負載電流分配故障一般稱之為“軟故障”,,此時電源輸出電壓雖然正常,,但多個電源模塊間電流分配不均。為此,,需要在開關(guān)電源LTC1629和負載之間加上兩個功率MOSFET(M1 和M2 串聯(lián),,如圖1所示),在模塊出現(xiàn)“硬故障”和“軟故障”時,,隔離故障模塊,。當電源LTC1629輸出短路,Isense功能塊檢測到Rsense上的大于30mV的反向電壓并且超過5μs時,,外部功率MOSFET柵極電壓馬上降低而使M2 開路,,斷開與負載的連接,過壓保護通過0V引腳外接的電阻分壓網(wǎng)絡(luò)監(jiān)視電源輸出電壓,,一旦0V引腳電壓超過設(shè)定的1.22V閾值,,則外部功率MOSFET的柵極電壓被拉低而使M1開路,斷開與負載的連接,。

  當電源首先作用到UCC引腳時,,功率MOSFET柵極電壓被拉低,一旦UCC升高并大于設(shè)定的欠壓鎖定閾值1.244V,,LTC4350的UV引腳發(fā)揮作用,。如果UV引腳電壓大于1.244V,外接功率MOSFET柵極開始由10μA的電流充電,,GATE 引腳電壓開始以斜率10μA/CG緩慢上升(如圖2所示),,這個緩慢充電過程允許電源輸出在不受干擾的情況下平穩(wěn)接入負載。而當電源斷開時,,UV 引腳電壓將低于1.22V,,LTC4350迅速將外接功率MOSFET柵極放電,使負載與電源之間斷開,,這樣就實現(xiàn)了LTC4350本身的熱插拔功能,。

  

圖2 接通電源時GATE引腳電壓

 

  圖2 接通電源時GATE引腳電壓

  欠壓鎖定閾值1.244V,LTC4350的UV引腳發(fā)揮作用,。如果UV引腳電壓大于1.244V,,外接功率MOSFET柵極開始由10μA的電流充電,GATE 引腳電壓開始以斜率10μA/CG緩慢上升(如圖2所示),,這個緩慢充電過程允許電源輸出在不受干擾的情況下平穩(wěn)接入負載,。而當電源斷開時,UV 引腳電壓將低于1.22V,,LTC4350迅速將外接功率MOSFET柵極放電,,使負載與電源之間斷開,,這樣就實現(xiàn)了LTC4350本身的熱插拔功能。

  

圖2 接通電源時GATE引腳電壓

 

  圖2 接通電源時GATE引腳電壓3 熱插拔設(shè)計

 

  圖3所示為兩塊并聯(lián)工作的電源模塊方框圖,,每個電源模塊都有自己的熱插拔電路設(shè)計,、開關(guān)電源以及均流電路,并聯(lián)工作的模塊間享有公共的均流母線,、負載線,、電源輸入線Uin以及模塊故障狀態(tài)告警線STATUS,。

  

圖3 由兩塊電源模塊組成電源系統(tǒng)

 

  圖3 由兩塊電源模塊組成電源系統(tǒng)

  任何一個電源模塊發(fā)生故障,,如不及時地移除和更換,將會引起電源系統(tǒng)的不穩(wěn)定甚至癱瘓,。因此,,需要故障模塊本身能自動斷開供電系統(tǒng),并通過STATUS引腳向系統(tǒng)發(fā)出信息(如圖4所示),,提示技術(shù)人員需要換上一個好的電源模塊,。對于連續(xù)供電的電源系統(tǒng)來說,需要帶電移除和插入,,當插拔電源模塊操作時,,不能給整個電源系統(tǒng)帶來干擾,以實現(xiàn)熱插拔,。

  

圖4 帶熱插拔和均流控制的開關(guān)電源模塊

 

  圖4 帶熱插拔和均流控制的開關(guān)電源模塊

  本電路采用兩級熱插拔保護設(shè)計,,其一是專用的熱插拔保護電路LT1641,主要控制外接的功率MOSFET管M5,,如圖4所示,,其通斷決定了輸入電壓Uin的通斷。其二是基于LTC4350本身的熱插拔電路,。

  4 實際應(yīng)用電路設(shè)計

  考慮到實際的惡劣應(yīng)用環(huán)境,,為了加強熱插拔的可靠性,在實際的應(yīng)用電路設(shè)計中,,有必要在每個電源模塊電路中加上專用的熱插拔控制電路LT1641,。因此,本設(shè)計的每個電源模塊都由三部分組成:熱插拔控制專用集成電路LT1641;開關(guān)電源集成電路LTC1629(此電路采用同步降壓電流模式控制);均流控制集成電路LTC4350,。

  實驗電源輸入Uin采用24V直流電壓,,經(jīng)過同步降壓開關(guān)電源LTC1629后,實際輸出Uout(負載母線電壓)為1.6V直流電壓,,輸出直流電流20A,。本次實驗制作了兩塊同樣的電源模塊一起工作,可以輸出高達40A的直流電流,。

  本次實驗只做了兩塊相同的電源模塊,,圖4只是其中的一塊,,和另外一塊做并聯(lián)實驗時,需要把它們的Uin,、Uout,、GND以及SB線分別對應(yīng)連接在一起。

  5 小 結(jié)

  通過實驗,,LTC4350很容易實現(xiàn)N+1冗余,,能夠及時有效地識別失效電源,并以關(guān)斷外接的串行MOSFET管的方式隔離故障電源,,允許電源系統(tǒng)其它電源模塊正常工作的情況下,,移走失效電源并插入一個新電源模塊替代??梢宰R別和定位輸出電壓低,,輸出電壓高以及開路故障,并給出警示信號,。

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。