《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 電源技術(shù) > 設(shè)計(jì)應(yīng)用 > 開關(guān)電源傳導(dǎo)EMI預(yù)測(cè)探討
開關(guān)電源傳導(dǎo)EMI預(yù)測(cè)探討
摘要: 傳統(tǒng)的EMC的補(bǔ)救辦法只能增加額外的元器件,,而增加元件有可能影響原始的控制環(huán)帶寬,,造成重新設(shè)計(jì)整個(gè)系統(tǒng)的最壞情況,,增加了設(shè)計(jì)成本,。為了避免出現(xiàn)這樣的情況,需要在設(shè)計(jì)過程中考慮EMC的問題,,對(duì)開關(guān)電源的EMI進(jìn)行一定精度的分析和預(yù)測(cè),,并根據(jù)干擾產(chǎn)生的機(jī)理及其在各頻帶的分布情況改進(jìn)設(shè)計(jì),降低EMI水平,,從而降低設(shè)計(jì)成本,。
Abstract:
Key words :

針對(duì)開關(guān)電源設(shè)計(jì)階段應(yīng)考慮的EMC問題,介紹了PCB及其結(jié)構(gòu)寄生參數(shù)提取和頻域仿真的方法,,在開關(guān)電源設(shè)計(jì)階段對(duì)其傳導(dǎo)EMI進(jìn)行預(yù)測(cè),,定位開關(guān)電源傳導(dǎo)EMI傳播路徑的影響因素,在此基礎(chǔ)上給出開關(guān)電源PCB及其結(jié)構(gòu)設(shè)計(jì)的基本原則,。對(duì)開關(guān)電源EMI預(yù)測(cè)過程中需要注意的問題以及降低開關(guān)電源傳導(dǎo)EMI的方法策略進(jìn)行了分析和總結(jié),。

  1 引言

     傳統(tǒng)的EMC的補(bǔ)救辦法只能增加額外的元器件,而增加元件有可能影響原始的控制環(huán)帶寬,,造成重新設(shè)計(jì)整個(gè)系統(tǒng)的最壞情況,,增加了設(shè)計(jì)成本。為了避免出現(xiàn)這樣的情況,,需要在設(shè)計(jì)過程中考慮EMC的問題,,對(duì)開關(guān)電源的EMI進(jìn)行一定精度的分析和預(yù)測(cè),,并根據(jù)干擾產(chǎn)生的機(jī)理及其在各頻帶的分布情況改進(jìn)設(shè)計(jì),降低EMI水平,,從而降低設(shè)計(jì)成本,。

  2 開關(guān)電源EMI特點(diǎn)及分類

  對(duì)開關(guān)電源傳導(dǎo)電磁干擾進(jìn)行預(yù)測(cè),首先需要明確其產(chǎn)生機(jī)理以及噪聲源的各項(xiàng)特性,。由于功率開關(guān)管的高速開關(guān)動(dòng)作,,其電壓和電流變化率都很高,上升沿和下降沿包含了豐富的高次諧波,,所以產(chǎn)生的電磁干擾強(qiáng)度大;開關(guān)電源的電磁干擾主要集中在二極管,、功率開關(guān)器件以及與其相連的散熱器和高頻變壓器附近;由于開關(guān)管的開關(guān)頻率從幾十kHz到幾MHz,所以開關(guān)電源的干擾形式主要是傳導(dǎo)干擾和近場(chǎng)干擾,。其中,,傳導(dǎo)干擾會(huì)通過噪聲傳播路徑注入電網(wǎng),,干擾接入電網(wǎng)的其他設(shè)備。

  開關(guān)電源傳導(dǎo)干擾分為2大類,。

  1)差模(DM)干擾。DM 噪聲主要由di/dt引起,,通過寄生電感,電阻在火線和零線之間的回路中傳播,,在兩根線之間產(chǎn)生電流Idm,不與地線構(gòu)成回路,。

  2)共模(CM)干擾。CM 噪聲主要由dv/dt引起,,通過PCB的雜散電容在兩條電源線與地的回路中傳播,,干擾侵入線路和地之間,干擾電流在兩條線上各流過二分之一,,以地為公共回路;在實(shí)際電路中由于線路阻抗不平衡,使共模信號(hào)干擾會(huì)轉(zhuǎn)化為不易消除的串?dāng)_干擾,。

  3 開關(guān)電源EMI的仿真分析

  從理論上來講,無論是時(shí)域仿真還是頻域仿真,,只要建立了合理的分析模型,其仿真結(jié)果都能正確反映系統(tǒng)的EMI量化程度,。

  時(shí)域仿真方法需要建立變換器中包含所有元件參數(shù)的電路模型,利用PSPICE或Saber軟件進(jìn)行仿真分析,,使用快速傅里葉分析工具得到EMI的頻譜波形,這種方法在DM 噪聲的分析中已經(jīng)得到了驗(yàn)證,。然而開關(guān)電源中的非線性元件如MOSFET,IGBT 等半導(dǎo)體器件,,其非線性特性和雜散參數(shù)使模型非常復(fù)雜,同時(shí)開關(guān)電源電路工作時(shí)其電路拓?fù)浣Y(jié)構(gòu)不斷改變,,導(dǎo)致了仿真中出現(xiàn)不收斂的問題。在研究CM 噪聲時(shí),,必須包含所有的寄生元件參數(shù),由于寄生參數(shù)的影響,,F(xiàn)FT結(jié)果和實(shí)驗(yàn)結(jié)果很難吻合;開關(guān)功率變換器通常工作在很大的時(shí)間常數(shù)范圍內(nèi),主要包括3組時(shí)間常數(shù):與輸出端的基本頻率有關(guān)的時(shí)間常數(shù)(幾十ms);與開關(guān)元件的開關(guān)頻率有關(guān)的時(shí)間常數(shù)(幾十μs);與開關(guān)元件導(dǎo)通或關(guān)斷時(shí)的上升時(shí)間和下降時(shí)間有關(guān)的時(shí)間常數(shù)(幾ns),。

  正因如此,,在時(shí)域仿真中,,必須使用非常小的計(jì)算步長(zhǎng),,并且需要用很長(zhǎng)時(shí)間才能完成計(jì)算;另外,時(shí)域方法得到的結(jié)果往往不能清晰地分析電路中各個(gè)變量對(duì)干擾的影響,,不能深層解釋開關(guān)電源的EMI行為,,而且缺乏對(duì)EMI機(jī)理的判斷,不能為降低EMI給出明確的解決方案。

  頻域仿真是基于噪聲源和傳播途徑阻抗模型基礎(chǔ)上的分析方法,。利用LISN為噪聲源提供標(biāo)準(zhǔn)負(fù)載阻抗,。如圖1所示,從LISN看過去,,整個(gè)系統(tǒng)可以簡(jiǎn)化成噪聲源,、噪聲路徑和噪聲接收器(LISN),。頻域方法可以大大降低仿真計(jì)算的時(shí)間,一般不會(huì)出現(xiàn)計(jì)算結(jié)果不收斂的情況,。

  

圖1 噪聲源與傳播路徑概念

 

  圖1 噪聲源與傳播路徑概念

  圖1中,,噪聲路徑包括PCB傳導(dǎo)、耦合路徑,,散熱片電容耦合路徑,變壓器耦合路徑等,。4 基于頻域方法的SMPS等效電路模型

 

  對(duì)開關(guān)電源進(jìn)行頻域仿真,,首先要建立開關(guān)電源的頻域仿真模型,。開關(guān)電源EMI頻域預(yù)測(cè)的重點(diǎn)是對(duì)噪聲路徑的建模,,其中包括:無源器件的高頻模型;PCB及結(jié)構(gòu)寄生參數(shù)的抽取。

  在考慮無源器件,、PCB及結(jié)構(gòu)寄生參數(shù)的基礎(chǔ)上,,建立開關(guān)電源集中參數(shù)的電路模型,可以通過計(jì)算或仿真得到該電路的阻抗,,諧振點(diǎn)等,,從而為降低EMI提供有力的依據(jù)。

  由于差模噪聲和共模噪聲的傳播路徑不同,,有必要對(duì)DM 傳播路徑和CM 傳播路徑分別建模,。這樣可以更好地分析各種干擾的特點(diǎn),,而且還可以為設(shè)計(jì)濾波器提供有力的依據(jù)。

  4.1 噪聲源的模型建立

  由于需要分別對(duì)DM 噪聲和CM 噪聲進(jìn)行分析,,所以對(duì)DM 噪聲源和CM 噪聲源也需要分別建模,。M.Nave在文獻(xiàn)[3]中提出使用電流源作為DM 噪聲源,使用電壓源作為CM 噪聲源的方法,,就是因?yàn)镈M 噪聲主要由di/dt引起,,而CM 噪聲則主要由dv/dt引起,。文獻(xiàn)[4]在此基礎(chǔ)上對(duì)CM 噪聲源進(jìn)行了改進(jìn),考慮了電壓過沖和下沖,,并且在線路阻抗近似平衡的情況下,,利用DM 電流源和一個(gè)電壓源來表示CM 噪聲源(如圖2所示)。

  

圖2 共模噪聲源的表示

 

  圖2 共模噪聲源的表示

  文獻(xiàn)基本都是用梯形波來表示噪聲源的,,但實(shí)際中并不是每個(gè)電路中的開關(guān)器件的波形都能很好地用梯形波近似,,圖3所示即為一個(gè)反激電源開關(guān)管的電流電壓波形,除了梯形波之外,,還有電流尖峰,,電壓過沖和下沖等分量,會(huì)導(dǎo)致噪聲源的頻譜與梯形波有一定的不同,。所以不能盲目地使用梯形波來表征噪聲源,,而是需要對(duì)電路進(jìn)行分析或者仿真,從而得到開關(guān)器件的電流或電壓波形,,基于此波形再對(duì)噪聲源進(jìn)行建模,,這樣才能更精確地反映開關(guān)電源的電磁干擾。

  

圖3 某反激電源開關(guān)管的電流電壓波形

 

  圖3 某反激電源開關(guān)管的電流電壓波形

  圖3 某反激電源開關(guān)管的電流電壓波形

  4.2 無源器件的高頻模型

  在EMI的頻率范圍內(nèi),,常用的無源器件都不能再被認(rèn)為是理想的,,他們的寄生參數(shù)嚴(yán)重影響著其高頻特性。

  在各種無源器件中,,電阻,、電感和電容的高頻等效寄生參數(shù)可以用高頻阻抗分析儀測(cè)得。表1所示為各種無源器件的理想模型和高頻等效模型,。

  表1 電阻,、電容、電感及變壓器的高頻等效模型

  

表1 電阻,、電容,、電感及變壓器的高頻等效模型

 

  對(duì)于高頻變壓器,提出可以使用有限元分析方法和實(shí)驗(yàn)測(cè)量法求取,從而可以得到漏感,、原副邊自電容和原副邊互電容這些引起電路震蕩,、增加傳導(dǎo)EMI的主要參數(shù)。使用ansoft公司的Maxwell仿真軟件,,可以通過輸入變壓器的繞組和磁芯的幾何尺寸與電磁參數(shù),,利用有限元分析的方法得到各寄生參數(shù)。實(shí)驗(yàn)測(cè)量法的總體思路就是在所建立模型的基礎(chǔ)上,,推導(dǎo)出變壓器在不同工作狀態(tài)下的阻抗特性(如原副邊繞組開路,,短路的不同組合)方程,然后測(cè)量這些狀態(tài)下的阻抗,,從而得到漏感和寄生電容,。

   4.3 PCB及結(jié)構(gòu)寄生參數(shù)的提取

 

  除了元器件選取、電路及其結(jié)構(gòu)設(shè)計(jì),,PCB的布局,、布線設(shè)計(jì)、線路板加工對(duì)電磁兼容會(huì)造成很大影響,,是一個(gè)非常重要的設(shè)計(jì)環(huán)節(jié),。由于開關(guān)電源的PCB布線基本上都是依據(jù)經(jīng)驗(yàn)手工布置,有很大的隨意性,,這就增加了PCB分布參數(shù)提取的難度,。PCB的寄生參數(shù)會(huì)造成開關(guān)電源噪聲傳播途徑的阻抗變化,影響控制器對(duì)開關(guān)電源輸出電壓電流的控制作用,。PCB的布局不合理還會(huì)形成開關(guān)電源向外輻射電磁干擾的途徑,,同時(shí)也會(huì)通過該途徑吸收外界電磁干擾,從而降低開關(guān)電源的電磁干擾抗擾度,。所以PCB的布局布線是開關(guān)電源EMC設(shè)計(jì)中極為重要的環(huán)節(jié),。

  對(duì)于傳導(dǎo)干擾,寄生參數(shù)的提取精確度是通過仿真有效預(yù)測(cè)EMI水平的關(guān)鍵,。盡管對(duì)于結(jié)構(gòu)簡(jiǎn)單的元件來說,寄生參數(shù)是很容易計(jì)算的,,但是對(duì)于復(fù)雜結(jié)構(gòu)中的元件來說,,并不是那么容易就能得到寄生參數(shù),例如多層板和直流母線的寄生參數(shù),。

  為了建立開關(guān)電源PCB的高頻模型,,需要對(duì)PCB的結(jié)構(gòu)寄生參數(shù)進(jìn)行抽取。提取PCB寄生參數(shù)的方法有很多,,其中TDR(時(shí)域反射)方法可以在不知道實(shí)際幾何形狀的情況下對(duì)寄生電感和寄生電容進(jìn)行提取,,但是TDR(時(shí)域反射)方法需要時(shí)域反射儀,用于樣機(jī)建成后,這就使開發(fā)成本大大增加,,而且TDR方法不能尋找到復(fù)雜結(jié)構(gòu)中的耦合效應(yīng);然而FEA(有限元分析)方法則可以克服這一缺點(diǎn),,用于樣機(jī)建成前。利用FEA工具可以準(zhǔn)確地得到PCB的寄生參數(shù),,并能考慮復(fù)雜幾何結(jié)構(gòu)的耦合情況,。

  有很多對(duì)PCB結(jié)構(gòu)進(jìn)行寄生參數(shù)抽取軟件,如InCa,SIwave,Q3D 等,,分別用不同的方法對(duì)PCB的寄生參數(shù)進(jìn)行計(jì)算和提取,,如部分元等效電路方法、有限元分析方法,、有限元分析方法和矩量法結(jié)合的方法等,。其中InCa軟件只能計(jì)算分布電感,不適合計(jì)算分布電容,,不宜處理共模干擾的仿真分析;SIwave軟件提取出來的是電路的S參數(shù),,不能清晰地反映PCB中的耦合情況及其對(duì)開關(guān)電源EMI的影響;Q3D 軟件利用FEA 和MOM結(jié)合的方法求解電磁場(chǎng),可以得到PEEC部分元等效電路,,也可以得到PCB上各導(dǎo)體的互感互容,,可以清晰地分析各種情況下PCB結(jié)構(gòu)對(duì)開關(guān)電源EMI的影響。

  J.Ekman提出了基于寄生參數(shù)矩陣的等效電路的建立方法,,即把所有互感,、互容等效成受控的電壓源,與自感,、自容連接(相當(dāng)于把所有互感,、互容對(duì)電路的影響等效到受控電壓源上),從而建立等效電路模型,。圖4所示為任意兩個(gè)節(jié)點(diǎn)間的等效電路模型,。

  

圖4 任意兩節(jié)點(diǎn)間的等效電路模型

 

  圖4 任意兩節(jié)點(diǎn)間的等效電路模型

  圖4中:

  

 

  式中:Lpmn為m和n兩導(dǎo)線間的互感。

  雖然這樣可以提高仿真的準(zhǔn)確性,,但是加大了分析的計(jì)算量,,可以通過忽略一些對(duì)結(jié)果影響不是很大的互感、互容,,減少計(jì)算量,。

  散熱片與開關(guān)管之間會(huì)有電容效應(yīng),噪聲可以通過該效應(yīng)在電路和地之間進(jìn)行傳播,,文獻(xiàn)【9】對(duì)散熱片在開關(guān)電源傳導(dǎo)和輻射干擾中的影響作了詳細(xì)的闡述,。

  還有其他的在空間通過電感或電容耦合傳到接收器的噪聲,不可以忽略,。

  模型建立之后,,就可以使用仿真軟件對(duì)開關(guān)電源EMI進(jìn)行仿真,,得到開關(guān)電源傳導(dǎo)EMI的頻譜波形,通過分析波形可以定位開關(guān)電源EMI的問題所在,,進(jìn)而通過解決該問題而降低EMI,。5 降低EMI的設(shè)計(jì)方法及策略

 

  降低開關(guān)電源EMI,需要從噪聲源和傳播路徑入手,。首先,,對(duì)于噪聲源,可以通過加吸收電路,,減小di/dt和dv/dt來降低其EMI水平,,但是這樣一來,開關(guān)電源的效率將會(huì)受到影響,,需要對(duì)這兩者進(jìn)行一定的取舍,。

  然后是對(duì)傳播路徑進(jìn)行改進(jìn)。改進(jìn)的目的是要使傳播路徑對(duì)于干擾的阻抗增大,,阻斷其向接收器的傳播,,而對(duì)于電網(wǎng)提供的功率,阻抗要小,,從而增加開關(guān)電源的工作效率,。

  選取元件時(shí)需要盡量選取寄生參數(shù)影響小的元件,比如電容的ESR和ESL要盡量小,,電感的寄生電容要小等,。在PCB以及散熱片的位置等設(shè)計(jì)過程中,也要盡可能增大對(duì)干擾傳播路徑的阻抗,,使噪聲盡可能少的通過PCB路徑傳導(dǎo)到接收器,。

  如果以上所有降低EMI的措施都完成了還沒有達(dá)到EMC的標(biāo)準(zhǔn),就可以根據(jù)前面仿真分析得到的差模和共模干擾的波形對(duì)濾波器進(jìn)行設(shè)計(jì),。在設(shè)計(jì)濾波器的時(shí)候,,也同樣要注意元件的布局,還有PCB寄生參數(shù)對(duì)濾波器阻抗的影響,,其本質(zhì)也是增大對(duì)干擾的阻抗,,使干擾無法通過傳播路徑。開關(guān)電源設(shè)計(jì)流程如圖5所示,。

  

圖5 開關(guān)電源設(shè)計(jì)流程

 

  圖5 開關(guān)電源設(shè)計(jì)流程

  6 結(jié)論

  綜上所述,,目前對(duì)于開關(guān)電源傳導(dǎo)干擾的預(yù)測(cè)方法有時(shí)域方法和頻域方法兩種,由于時(shí)域方法需要使用很小的計(jì)算步長(zhǎng),,需要花費(fèi)很長(zhǎng)的計(jì)算時(shí)間,容易出現(xiàn)仿真結(jié)果不收斂的問題,。同時(shí),,時(shí)域仿真得到的結(jié)果往往不能清晰地分析電路中各個(gè)變量對(duì)干擾的影響,。而頻域仿真物理意義清晰,更容易判斷各參數(shù)對(duì)EMI的影響,,能夠?yàn)榻档虴MI提供有力依據(jù),,關(guān)鍵問題是建立合理的干擾源和傳播途徑的頻域模型。

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。