《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > EDA與制造 > 設(shè)計(jì)應(yīng)用 > 555定時(shí)器的應(yīng)用及OrCAD/PSpice仿真
555定時(shí)器的應(yīng)用及OrCAD/PSpice仿真
EEworld
EEworld
摘要: 本文以O(shè)rCAD/PSpice 10.5為工具,,對(duì)555定時(shí)器構(gòu)成的三種典型電路進(jìn)行仿真分析,,得出了一些有價(jià)值的結(jié)論,。
Abstract:
Key words :

 

本文以OrCADPSpice 10.5為工具,,對(duì)555定時(shí)器構(gòu)成的三種典型電路進(jìn)行仿真分析,,得出了一些有價(jià)值的結(jié)論,。

555定時(shí)器是一種將模擬功能與數(shù)字(邏輯)功能緊密結(jié)合在一起的中小規(guī)模單片集成電路,。它功能多樣,應(yīng)用廣泛,,只要外部配上幾個(gè)阻容元器件即可構(gòu)成單穩(wěn)態(tài)觸發(fā)器、施密特觸發(fā)器,、多諧振蕩器等電路,,是脈沖波形產(chǎn)生與變換的重要元器件,廣泛應(yīng)用于信號(hào)的產(chǎn)生與變換,、控制與檢測(cè),、家用電器以及電子玩具等領(lǐng)域。

OrCAD/PSpice作為國(guó)際上著名的電子設(shè)計(jì)自動(dòng)化軟件之一,,具有仿真速度快,、精度高等優(yōu)點(diǎn),不僅可以用于電路分析和優(yōu)化設(shè)計(jì),,與印制版設(shè)計(jì)軟件配合使用,,還可實(shí)現(xiàn)電子設(shè)計(jì)自動(dòng)化,被公認(rèn)是通用電路模擬程序中最優(yōu)秀的軟件之一,。例如:基于該軟件,,Essakhi等人提出了一種微波整流天線的時(shí)域模型;Du等人提出了一種從三維時(shí)域場(chǎng)分析提取S參數(shù)的方法,;Zhang等人仿真了E類(lèi)功率放大器的特性,,并進(jìn)行了實(shí)驗(yàn)證實(shí);Sakuta等人分析了低相位噪聲振蕩器的特性,,并計(jì)算了有載Q值,;Hayahara等人設(shè)計(jì)了△-∑A/D轉(zhuǎn)換器,并對(duì)其信噪比進(jìn)行了仿真,;Brecl等人提出了一維,、二維薄膜模型,,并模擬了其接觸電阻。這些表明,,軟件OrCAD/PSpice是現(xiàn)代電子電路設(shè)計(jì)的有利工具,。


1  555定時(shí)器組成框圖及工作原理

555定時(shí)器的圖形符號(hào)及管腳圖如圖1所示,其中管腳1是公共端,,管腳2為觸發(fā)端,,管腳3為輸出端,管腳4為復(fù)位端,,管腳5是控制電壓輸入端,,管腳6為閾值端,管腳7是內(nèi)部三極管的放電端,,管腳8是電源端,。


555定時(shí)器的內(nèi)部電路方框圖如圖2所示,該集成電路由四部分組成:電阻分壓器,、電壓比較器,、基本RS觸發(fā)器、輸出緩沖器和放電三極管,。

比較器的參考電壓由三只5 kΩ的電阻器構(gòu)成分壓,,它們分別使高電平比較器A1同相比較端和低電平比較器A2的反相輸入端的參考電平為2Vcc/3和Vcc/3。A1和A2的輸出端控制RS觸發(fā)器狀態(tài)和放電管開(kāi)關(guān)狀態(tài),。當(dāng)輸入信號(hào)輸入并超過(guò)2Vcc/3時(shí),,觸發(fā)器復(fù)位,555的輸出端3腳輸出低電平,,同時(shí)放電,,開(kāi)關(guān)管導(dǎo)通;當(dāng)輸入信號(hào)自2腳輸入并低于Vcc/3時(shí),,觸發(fā)器置位,,555的3腳輸出高電平,同時(shí)充電,,開(kāi)關(guān)管截止,。

MR是復(fù)位端,當(dāng)其為0時(shí),,555輸出低電平,。平時(shí)該端開(kāi)路或接Vcc。

CO是控制電壓端(5腳),,平時(shí)輸出2Vcc/3作為比較器A1的參考電平,,當(dāng)5腳外接一個(gè)輸入電壓,即改變了比較器的參考電平,從而實(shí)現(xiàn)對(duì)輸出的另一種控制,,在不接外加電壓時(shí),,通常接一個(gè)0.01μF的電容器到地,起濾波作用,,以消除外來(lái)的干擾,,以確保參考電平的穩(wěn)定。

T為放電管,,當(dāng)T導(dǎo)通時(shí),,將給接于腳7的電容器提供低阻放電電路。

2 單穩(wěn)態(tài)觸發(fā)器仿真分析

單穩(wěn)態(tài)觸發(fā)器廣泛用于脈沖整形,、延時(shí)及定時(shí)電路中,。單穩(wěn)態(tài)觸發(fā)器有一個(gè)穩(wěn)態(tài)和一個(gè)暫穩(wěn)態(tài),在無(wú)外來(lái)觸發(fā)脈沖作用時(shí),,電路保持穩(wěn)態(tài)不變,,而當(dāng)有外來(lái)觸發(fā)脈沖作用下,電路由穩(wěn)態(tài)翻轉(zhuǎn)到暫穩(wěn)態(tài),,并輸出一個(gè)脈寬和幅值恒定的矩形脈沖,,輸出的脈沖寬度TW等于暫穩(wěn)態(tài)的持續(xù)時(shí)間,而暫穩(wěn)態(tài)的持續(xù)時(shí)間取決于R2,,C2,,則:


運(yùn)行OrCAD/CaptureCIS,利用Schematics繪制的由555定時(shí)器構(gòu)成的單穩(wěn)態(tài)觸發(fā)器電路見(jiàn)圖3,,輸入信號(hào)Vi為脈沖電壓源(VPULSE),,設(shè)置其參數(shù)如下:


值得注意的是,,輸入信號(hào)VPULSE的重復(fù)周期必須大于輸出的脈沖寬度TW,,輸入信號(hào)VPULSE的脈寬應(yīng)小于TW,才能保證每一個(gè)正倒置脈沖起作用,。

利用OrCAD/PSpice 10.5的瞬態(tài)分析功能進(jìn)行仿真,,瞬態(tài)分析(Time Domain Transient)是指在給定輸入激勵(lì)信號(hào)的作用下,計(jì)算電路輸出端的瞬態(tài)響應(yīng),,其實(shí)質(zhì)就是計(jì)算時(shí)域響應(yīng),。設(shè)置瞬態(tài)分析參數(shù)從零時(shí)刻開(kāi)始記錄數(shù)據(jù),到4 ms結(jié)束,,最大步長(zhǎng)為0.1 ms,。進(jìn)行瞬態(tài)分析后,得到圖4所示的輸出電壓波形圖,,其中類(lèi)似于鋸齒波的是電容C2兩端的電壓,,而方波則是555的輸出端Vout的電壓波形。

由圖4可見(jiàn),電容C2存在自動(dòng)充放電過(guò)程,。當(dāng)觸發(fā)脈沖到達(dá)時(shí),,電源Vcc通過(guò)R2給電容C2充電,從0 V充電到約3.33 V之前,,555定時(shí)器的輸出始終保持高電平,,而一旦電容充電到3.33 V,555的輸出立即轉(zhuǎn)換為低電平,,隨后電容C2開(kāi)始從3.33 V迅速放電到0 V,,此后又開(kāi)始新的充放電過(guò)程。在555的輸出端Vout可以獲得周期性的矩形脈沖,,而脈沖的寬度約為1.09 ms,,與理論計(jì)算值1.1R2C2相近。并且輸出脈沖的寬度與輸入信號(hào)VPULSE的脈寬和幅度無(wú)關(guān),。

3 施密特觸發(fā)器仿真分析

用555定時(shí)器構(gòu)成的施密特觸發(fā)器將閥值端和觸發(fā)端接在一起作為輸入端,。運(yùn)行OrCAD/CaptureCIS,利用Schematics繪制的555定時(shí)器構(gòu)成的施密特觸發(fā)器電路如圖5所示,。輸入信號(hào)Vi為三角波電壓源(VPWL),,設(shè)置其參數(shù)為:


利用PSpice的瞬態(tài)分析功能進(jìn)行仿真,設(shè)置瞬態(tài)分析參數(shù)從零時(shí)刻開(kāi)始記錄數(shù)據(jù),,到3 ms結(jié)束,,最大步長(zhǎng)為1μs,得到555的輸出端Uout的電壓波形與輸入電壓波形如圖6所示,。


由圖6可見(jiàn),,該電路能將輸入三角波轉(zhuǎn)換成方波輸出,當(dāng)輸入三角波電壓升高,,輸出電平發(fā)生轉(zhuǎn)換時(shí)所對(duì)應(yīng)的門(mén)限電壓約為8 V,,而當(dāng)輸入三角波電壓降低,輸出電平發(fā)生轉(zhuǎn)換時(shí)所對(duì)應(yīng)的門(mén)限電壓約為4 V,,即上門(mén)限電壓與下門(mén)限電壓不同,,輸入與輸出間具有遲滯特性。將輸入信號(hào)換成正弦信號(hào)后,,得到輸入/輸出電壓的波形如圖7所示,,依然表現(xiàn)出遲滯特性,且上門(mén)限電壓與下門(mén)限電壓仍分別為8 V和4 V,,而這正是施密特觸發(fā)器電路的工作特性,。仿真結(jié)果與理論計(jì)算結(jié)果的上門(mén)限電壓(2/3 Vcc)和下門(mén)限電壓(1/3 Vcc)相符。

4 多諧振蕩器仿真分析

多諧振蕩器是一種自激振蕩器,,接通電源后不需要外加觸發(fā)信號(hào)便能自動(dòng)產(chǎn)生矩形脈沖,。運(yùn)行OrCAD/Capture CIS,,利用Schematics繪制的由555定時(shí)器構(gòu)成的多諧振蕩器電路如圖8所示。


電路由一個(gè)555B芯片,、兩個(gè)電阻和兩個(gè)電容組成,,通過(guò)電阻給電容C1充電、放電的過(guò)程來(lái)產(chǎn)生振蕩,,從而輸出矩形脈沖,。啟動(dòng)PSpice瞬態(tài)分析功能,觀察電容C1的端電壓和555的輸出端Vout的電壓,,得到圖9所示的波形,。由圖9中發(fā)現(xiàn)555定時(shí)器構(gòu)成的多諧振蕩器的輸出電壓Vout始終保持高電平,并沒(méi)有產(chǎn)生預(yù)期的振蕩,。

4.1  OrCAD/PSpice中555多諧振蕩器不能起振的原因

分析可知,,PSpice中555多諧振蕩器不能起振的原因在于起振源。實(shí)際振蕩電路之所以能自行起振是由于起振源的存在,。實(shí)際振蕩電路的起振源主要由兩方面因素構(gòu)成:一是由振蕩電路晶體管內(nèi)部的噪聲和電路噪聲(電阻熱噪聲等)引起,;二是由電路接通電源瞬間的沖擊電流引起。而直接利用PSpice對(duì)圖6電路進(jìn)行模擬仿真時(shí),,PSpice會(huì)將電路中的555定時(shí)器,、電阻、電容,、電源等元件和電路的接通過(guò)程都理想化,,即電路中不能產(chǎn)生任何噪聲和干擾。因此,,沒(méi)有起振源,,自然就不能產(chǎn)生振蕩。

4.2有效起振方法

經(jīng)查閱相關(guān)文獻(xiàn)[10],,并經(jīng)多次實(shí)驗(yàn)驗(yàn)證,,發(fā)現(xiàn)有多種方法可以使電路起振,現(xiàn)介紹其中兩種最簡(jiǎn)單的方法供大家參考:  

(1)給電容加初始值(IC值),,本例中只將C1和C2的IC設(shè)為0,。電容上的初始電壓,,只是激發(fā)了振蕩電路的振蕩,,沒(méi)有改變電路起振后的輸出波形,也沒(méi)有影響對(duì)振蕩電路起振特性的研究,。

(2)在瞬態(tài)分析仿真設(shè)置(Simulstion Settings)中激活初始瞬態(tài)偏置點(diǎn)計(jì)算(Skip the Initial Transient Biaspoint Calculation)選項(xiàng),,直接使用各元件的起始條件來(lái)作瞬態(tài)分析。

兩種方法都能順利使555多諧振蕩器發(fā)生起振,,且持續(xù)地輸出脈沖波形,。

4.3仿真結(jié)果與理論計(jì)算值比較

4.3.1計(jì)算指標(biāo)理論值

4.3.2  仿真值

在OrCAD/PSpice中,,采用前面提出的模擬振蕩電路的起振方法得到555振蕩電路輸出端的矩形脈沖電壓波形,如圖10所示,。


由圖10可見(jiàn),,電源Vcc先通過(guò)R1,R2給C1充電,,使電容C1從0 V充電到2Vcc/3,,接著從2Vcc/3放電到Vcc/3,又再?gòu)腣cc/3充電到2Vcc/3,,電容C1形成周期性的充放電過(guò)程,,從而在555的輸出端Vout形成周期性的矩形脈沖波,構(gòu)成多諧振蕩器,。由圖10所示,,可得輸出矩形脈沖特性參數(shù):


仿真結(jié)果表明,輸出脈沖周期,、占空比系數(shù)的仿真值與理論值基本相符,。同時(shí)分析可知,其值只與電阻,、電容值有關(guān),,電容上的初始電壓,只是激發(fā)了振蕩電路的振蕩,,并不會(huì)改變電路起振后的輸出波形,,也不會(huì)影響對(duì)振蕩電路起振特性的研究。

5 結(jié)  語(yǔ)

利用OrCAD/PSpice 10.5對(duì)555定時(shí)器構(gòu)成的單穩(wěn)態(tài)觸發(fā)器,、施密特觸發(fā)器和多諧振蕩器的特性進(jìn)行了仿真分析,。同時(shí),針對(duì)仿真過(guò)程中多諧振蕩器不起振的問(wèn)題進(jìn)行了討論,,提出了振蕩電路的有效起振方法,,仿真結(jié)果與理論計(jì)算值基本相符表明OrCAD/PSpice是電子線路設(shè)計(jì)人員必須掌握的基本工具之一。

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。