《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 嵌入式技術(shù) > 設(shè)計(jì)應(yīng)用 > 基于事例推理(CBR)的情感智能教學(xué)研究
基于事例推理(CBR)的情感智能教學(xué)研究
來源:微型機(jī)與應(yīng)用2011年第13期
閆 菲,,牛秦洲,張照輝
(桂林理工大學(xué) 信息科學(xué)與工程學(xué)院,,廣西 桂林 541004)
摘要: 針對事例檢索算法中最近鄰算法判斷盲目,、計(jì)算量大等問題,改進(jìn)為聚類C-均值算法,;對C-均值聚類對初值敏感,,分類結(jié)果受到取定的類別數(shù)目及聚類中心初始位置的影響,及易陷于局部極小值等問題,,再次將改進(jìn)的算法結(jié)合改進(jìn)后的最大最小距離法,,以優(yōu)化初始聚類,將最終改進(jìn)的算法進(jìn)行了仿真比較,。將最終改進(jìn)的算法運(yùn)用于情感智能教學(xué)中,,創(chuàng)建了面部表情的子表情模板,提高了表情的識別率,。
Abstract:
Key words :

摘  要: 針對事例檢索算法中最近鄰算法判斷盲目,、計(jì)算量大等問題,改進(jìn)為聚類C-均值算法,;對C-均值聚類對初值敏感,,分類結(jié)果受到取定的類別數(shù)目及聚類中心初始位置的影響,及易陷于局部極小值等問題,,再次將改進(jìn)的算法結(jié)合改進(jìn)后的最大最小距離法,,以優(yōu)化初始聚類,將最終改進(jìn)的算法進(jìn)行了仿真比較,。將最終改進(jìn)的算法運(yùn)用于情感智能教學(xué)中,,創(chuàng)建了面部表情的子表情模板,提高了表情的識別率,。
關(guān)鍵詞: CBR,;事例檢索;聚類C-均值算法,;表情識別

 智能教學(xué)系統(tǒng)(ITS)從概念形成到現(xiàn)在一直是計(jì)算機(jī)科學(xué)和教育科學(xué)領(lǐng)域結(jié)合的一個(gè)研究熱點(diǎn),。此后情感識別成為最大的研究熱點(diǎn),進(jìn)而也產(chǎn)生了一些適用的方法,,比如可穿戴情感識別設(shè)備[1]等,;還出現(xiàn)了一些關(guān)于情感教學(xué)系統(tǒng)(ATS)的研究 [2],。但目前這些研究還處于起步階段,仍存在一定問題,。本文將基于事例的推理(CBR)運(yùn)用于情感智能教學(xué)中,,首先針對事例檢索算法中最近鄰算法判斷盲目、計(jì)算量大等問題,,改進(jìn)為C-均值聚類算法,;再針對C-均值聚類對初值敏感等缺點(diǎn),二次優(yōu)化為改進(jìn)的最大最小距離法,;最后將改進(jìn)的算法運(yùn)用于面部表情子表情模板的分類中,,以提高表情識別率。
1 基于事例的推理(CBR)和事例的檢索
1.1 基本原理

 CBR的理念是將新問題抽象為一個(gè)新事例,,通過從事例庫中檢索最相近的事例,,參考其解決方案作為新事例的解決方法,在此基礎(chǔ)上再進(jìn)行事例修正,。修正后的新事例及其解決方法繼續(xù)存入事例庫中,,實(shí)現(xiàn)解決問題經(jīng)驗(yàn)的學(xué)習(xí)[3]。CBR系統(tǒng)是一個(gè)完整的循環(huán),,在事例的提取(Retrieve),、重用(Reuse)、修正(Revise),、保存(Retain)[4]過程中,,事例檢索是重要環(huán)節(jié),而且檢索本身具有一定的模糊性,,大多數(shù)情況下檢索到與新問題類似的事例,,然后根據(jù)新舊事例之間的相似程度判斷推理的可信程度。
1.2 基于聚類的改進(jìn)算法
 在CBR系統(tǒng)中事例檢索廣泛采用的是最近鄰法,,其基本原理是:通過判斷新事例與每一舊事例的歐氏距離,,找出相似的事例。由于此算法沒有控制策略,,導(dǎo)致判斷盲目、計(jì)算量大,,是一種低效率的算法[5],。對此提出如下改進(jìn):首先對事例庫進(jìn)行聚類預(yù)處理,使得歸類后同一類事例之間的特征向量相互靠近,,并且找到每個(gè)聚類的均值,。然后,新事例直接與每個(gè)代表點(diǎn)進(jìn)行比較,,找到與它最相近的聚類并在這個(gè)聚類中采用以上的最近鄰法搜索最相近的事例[6],。
 C-均值算法是一種常用的聚類算法,,引用聚類C-均值算法對事例庫進(jìn)行聚類之后,便可采用最近鄰法進(jìn)行推理,。推理時(shí),,新事例只需要與每個(gè)代表點(diǎn)進(jìn)行比較,找到與它最相近的聚類并在這個(gè)聚類中搜索最相近的事例,,這樣避免了盲目搜索,,實(shí)現(xiàn)了算法優(yōu)化。但是,,C-均值算法對初值敏感,,即不同的初值可能會(huì)導(dǎo)致不同的聚類結(jié)果,分類結(jié)果還受到取定的類別數(shù)目及聚類中心的初始位置的影響,。由于是基于梯度下降的算法,,則不可避免地會(huì)常常陷于局部極小值。
1.3 最大最小距離算法的二次改進(jìn)
1.3.1 算法思想

 在最大最小距離算法中,,原則是取盡可能離遠(yuǎn)的對象作為聚類中心,,初始聚類中心通過隨機(jī)指定。在C-均值聚類算法的基礎(chǔ)上添加優(yōu)化選取初始聚類中心,,對該算法進(jìn)行首次改進(jìn),。為了解決聚類結(jié)果對初始聚類中心敏感的問題,加入粗分類環(huán)節(jié),,對該算法進(jìn)行二次改進(jìn):初始聚類中心同時(shí)選取樣本中距離最遠(yuǎn)的兩個(gè)樣本作為前兩個(gè)初始中心,,然后運(yùn)用最大最小距離算法進(jìn)一步確定其余初始中心進(jìn)行粗分類,具體的算法流程:
 (1)聚類類別數(shù)C的確定,。范圍為樣本集的數(shù)據(jù)個(gè)數(shù)N,。
 (2)第一、二個(gè)聚類中心的確定,。計(jì)算樣本集中任意兩點(diǎn)的歐氏距離di1~i2,,取dn1~n2=max{di1~i2},其中n1,,n2的取值范圍也為樣本集的數(shù)據(jù)個(gè)數(shù)N,,則dn1~n2對應(yīng)的點(diǎn)z1,z2為所求,。
 (3)其余聚類中心的確定,。取樣本集中的任一點(diǎn),計(jì)算出與步驟(2)得出的兩個(gè)中心點(diǎn)的距離,,分別取最小值組成一維的最小值數(shù)組,,數(shù)組中的最大值對應(yīng)的點(diǎn)為第三個(gè)聚類中心。重復(fù)執(zhí)行此步驟,就可得到所有的聚類中心值,。
 (4)粗分類,。當(dāng)所有的聚類中心都確定后,將樣本集中各數(shù)據(jù)按最小距離原則分配到各類中去,,得到粗分類的分類結(jié)果,。
1.3.2 仿真比較
 運(yùn)用改進(jìn)的最大最小距離算法進(jìn)行粗分類,初始的隨機(jī)數(shù)據(jù)矩陣組成事例庫,,數(shù)據(jù)樣本單位為相對度量,。確定最優(yōu)的聚類數(shù)C=4,而后運(yùn)用C-均值聚類算法進(jìn)行分類,,比較圖如圖1所示,。


2 基于事例推理的情感智能教學(xué)研究
2.1 教學(xué)智能情感化模型設(shè)計(jì)

 教學(xué)智能情感模型主要包括:情感識別模塊、情感分析模塊,、反饋模塊及評價(jià)模塊,。此外,系統(tǒng)還有在線教學(xué)模塊,、教學(xué)反饋模塊,、登錄退出模塊等,結(jié)構(gòu)設(shè)計(jì)如圖2所示,。
2.2 基于改進(jìn)事例推理的情感識別模塊
 學(xué)生的情感狀態(tài)能夠基于語音,、面部表情、血壓等機(jī)制進(jìn)行識別,。為了有效地理解學(xué)生的情感狀態(tài),,本識別模型采用基于多模式的情感識別方法,此方法分為三部分:基于視覺的面部表情識別,、身體動(dòng)作識別,、以及基于聽覺的會(huì)話信息(語音)識別。本文重點(diǎn)研究面部表情識別,。
2.2.1 面部表情識別流程
 具體的面部表情識別流程如圖3所示,。所有的表情圖像都要經(jīng)過小波變換求出特征向量,并對特征向量進(jìn)行訓(xùn)練,、投影變換,,以求得特征空間。表情模板的建立,、表情的分類等都在此特征空間進(jìn)行,。

2.2.2 基于改進(jìn)C-均值聚類的子類表情模板
 由于表情因人而異,因此很難只使用一個(gè)表情模板來代表一種表情,,需要對每種表情再劃分成多個(gè)子類。本文選用耶魯大學(xué)計(jì)算視覺與控制中心創(chuàng)建的Yale人臉數(shù)據(jù)庫,來進(jìn)行子表情模板的劃分,。其中,,有15位志愿者的各種表情,只選用“高興”表情,,如圖4所示,。對圖中每一位志愿者的表情,經(jīng)過Hough小波變換求出特征向量和一階矩,,對樣本屬性單位進(jìn)行無量綱化和歸一化,,并使用分析方法對特征向量進(jìn)行訓(xùn)練,投影變換到特征空間,。對子類表情的再分類,,則采用上文改進(jìn)后的最終算法進(jìn)行聚類,聚類的結(jié)果如圖5所示,。

 根據(jù)圖5,,將圖4的“高興”表情進(jìn)行模板劃分,再次分為兩個(gè)子表情模板,,各子表情模板如圖6,、7所示。
基于事例推理(CBR)研究的興起,,體現(xiàn)了人類認(rèn)識世界,、改造世界的一種方法論上的轉(zhuǎn)變。而CBR是一種方法而非一種技術(shù),,這種界定使CBR成為一個(gè)開放的系統(tǒng),,在解決非結(jié)構(gòu)化、知識獲取困難,、復(fù)雜環(huán)境下的決策問題方面顯示了其優(yōu)越性,,對CRB理論、技術(shù)的研究和應(yīng)用具有廣闊的前景和巨大的現(xiàn)實(shí)意義,。

參考文獻(xiàn)
[1] PICARD R W,, Affective learning -a manifesto[J]. BT Technology Journal. 2004,22(4):253-269.
[2] ALEXANDER S T V. An affect-sensitive intelligent tutoring system with an animated pedagogical agent that adapts to student emotion like a human tutor[M]. Massey University,,Albany,, New Zealand, 2007.
[3] 韓軍,,車文剛.CBR—一種新型的人工智能推理方法[J].昆明理工大學(xué)學(xué)報(bào)(理工版),,2003,28(1):88-91.
[4] PLAZA E,, ARMENGOL E,, TIAGO S. The explanatory power of symbolic similarity in case-based reasoning[J].Artificial Intelligence Review,, 2005,24:145-161.
[5] 陳真勇,,何永勇,,褚福磊.基于遺傳進(jìn)化的最近鄰聚類算法及其應(yīng)用[J].控制與決策,2002(7):466-471.
[6] 魏傳鋒,,龐彧.改進(jìn)的最近鄰法在基于事例推理中的應(yīng)用[J].系統(tǒng)仿真學(xué)報(bào),,2005,17(5):1045-1047.
[7] 單凱晶,,肖懷鐵.初始聚類中心選取的核C-均值聚類算法[J].計(jì)算機(jī)仿真,,2009,26(7):118-121.

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。