文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào): 0258-7998(2011)10-0046-03
正交頻分復(fù)用技術(shù)[1](OFDM)由于頻譜利用率高,、易于實(shí)現(xiàn)等優(yōu)點(diǎn),,在現(xiàn)代無(wú)線通信領(lǐng)域得到了廣泛的應(yīng)用。在TD-LTE中,,下行鏈路采用的就是OFDM技術(shù),。
TD-LTE物理下行鏈路需要進(jìn)行一系列的算法操作,其中IFFT變換是必不可少的,。由于做FFT和IFFT變換會(huì)占用較多的資源,,從目前的硬件處理速度來(lái)看,不可能完全靠DSP完成這些算法,,所以在設(shè)計(jì)中一般采用DSP+FPGA的信號(hào)處理核心[2],。其中由DSP完成靈活多變和計(jì)算量不大的運(yùn)算,由FPGA完成快速和固定的較大計(jì)算量的運(yùn)算[3],,這樣就可以同時(shí)發(fā)揮DSP和FPGA的優(yōu)點(diǎn),。本文基于TD-LTE無(wú)線終端綜合測(cè)試儀表項(xiàng)目的開(kāi)發(fā),提出了使用FPGA實(shí)現(xiàn)基帶信號(hào)發(fā)送的方案,,并進(jìn)行了相關(guān)的研究,。
1 OFDM調(diào)制原理
TD-LTE系統(tǒng)采用OFDMA作為下行鏈路的多址方式,如圖1所示,。
1.1 子載波映射
子載波映射形式有集中式(Localized)[3]和分布式(Distributed)兩種,。下行鏈路使用的是集中式映射形式。
2 硬件實(shí)現(xiàn)與優(yōu)化方案
2.1 基帶信號(hào)發(fā)送模塊的硬件實(shí)現(xiàn)
基帶信號(hào)發(fā)送在基帶板中最關(guān)鍵的部分是做IFFT變換,,在硬件實(shí)現(xiàn)過(guò)程中涉及到與DSP以及中頻,、射頻的接口問(wèn)題,所以圍繞IFFT變換,,周?chē)€要增加一些必需的模塊,。TD-LTE無(wú)線終端綜合測(cè)試儀表中基帶信號(hào)發(fā)送模塊的硬件實(shí)現(xiàn)如圖3所示,。
McBSP接口間傳輸?shù)男盘?hào)是幀同步信號(hào)(fsx)和32 bit的數(shù)據(jù)信號(hào)(dx)以及時(shí)鐘信號(hào)(clkx)。在本系統(tǒng)中采用的fsx和dx的延遲是兩個(gè)時(shí)鐘,。FPGA中的McBSP接口通過(guò)移位寄存器和緩沖寄存器完成數(shù)據(jù)的接收,,將串行的比特流轉(zhuǎn)換成32 bit寬的并行數(shù)據(jù)。
將McBSP接口接收的數(shù)據(jù)導(dǎo)入McBSP_READ模塊,,在控制信息的控制下,,對(duì)數(shù)據(jù)完成相應(yīng)的子載波映射后,存入兩片形成乒乓操作的RAM,。
2.1.2 I2C接口設(shè)計(jì)
I2C總線協(xié)議規(guī)定,,在 SDA上發(fā)送數(shù)據(jù),每個(gè)字節(jié)必須為8 bit,,首先傳輸?shù)氖亲止?jié)的最高位(MSB),,每次傳輸?shù)淖止?jié)數(shù)不受限制。主機(jī)發(fā)送起始條件后,,首先發(fā)送一個(gè)7 bit的從機(jī)地址,,緊接著發(fā)送1 bit的數(shù)據(jù)傳輸方向位(R/W)以指示是由從器件讀取數(shù)據(jù)還是把數(shù)據(jù)寫(xiě)入從器件。數(shù)據(jù)傳輸由主機(jī)產(chǎn)生的停止條件結(jié)束,,完整的數(shù)據(jù)傳輸時(shí)序如圖5所示,。
2.1.3 IFFT變換
IFFT變換是基帶信號(hào)發(fā)送的關(guān)鍵模塊,本系統(tǒng)使用的IFFT變換點(diǎn)數(shù)N等于2 048,。IFFT的實(shí)現(xiàn)是調(diào)用IPcore[5],,通過(guò)對(duì)表2中幾種算法的綜合比較,最終采用的是Pipelined stresming I/O 型,,可以滿(mǎn)足連續(xù)數(shù)據(jù)流的處理,,且速度較快,但是會(huì)比突發(fā)類(lèi)型(Burst)占用更多的資源,。
2.1.4 系統(tǒng)定時(shí)模塊的設(shè)計(jì)
系統(tǒng)定時(shí)(TIMER)是整個(gè)系統(tǒng)重要的模塊,。主要功能是以系統(tǒng)時(shí)鐘122.88 MHz為基準(zhǔn),對(duì)LTE系統(tǒng)的幀以及時(shí)隙定時(shí),。一方面通過(guò)發(fā)送子幀中斷和幀中斷信號(hào)控制DSP子幀以及幀的發(fā)送,;另一方面要對(duì)FPGA中的DDR2 SDRAM進(jìn)行控制,進(jìn)而完成對(duì)TX模塊的控制,,以保證基帶信號(hào)的發(fā)送滿(mǎn)足標(biāo)準(zhǔn)中的規(guī)定,。
2.1.5 中頻、射頻模塊
TX模塊后的數(shù)據(jù)進(jìn)入中頻,,在中頻進(jìn)行IQ調(diào)制,,之后對(duì)IQ調(diào)制后的數(shù)據(jù)進(jìn)行CIC插值,以122.88 MHz的D/A采樣速率輸出,在頻域上將信號(hào)調(diào)制到中心頻率為30.72 MHz,,帶寬為所需的相應(yīng)帶寬,。在射頻(RF)中,進(jìn)行混頻操作,,將數(shù)據(jù)調(diào)到2.4 GHz的載波上,。之后通過(guò)天線發(fā)送數(shù)據(jù)。
2.2 硬件實(shí)現(xiàn)中的優(yōu)化方案
2.2.1 系統(tǒng)設(shè)計(jì)優(yōu)化
由于基帶信號(hào)的發(fā)送需要滿(mǎn)足多種帶寬的需求,,相應(yīng)的子載波數(shù)和子載波映射的位置都會(huì)不同,因此本系統(tǒng)中提出了將DSP的控制信息通過(guò)I2C總線傳到FPGA中,,這樣FPGA收到控制信息后,,在McBSP_READ模塊中進(jìn)行相應(yīng)的子載波映射操作,并將映射后的數(shù)據(jù)送到RAM中,。
同時(shí)無(wú)線幀的發(fā)送也要滿(mǎn)足相應(yīng)的上下行鏈路配置,,如表3所示。FPGA通過(guò)I2C總線接收DSP的控制信息后,,控制TX模塊進(jìn)行相應(yīng)的發(fā)送控制,。
2.2.2 存儲(chǔ)資源優(yōu)化
由于IFFT連續(xù)變換后的數(shù)據(jù)量很大,如果用RAM存儲(chǔ)數(shù)據(jù),,則會(huì)占用很多的FPGA邏輯資源,,而基帶板中DDR2 SDRAM空間很大。故在本系統(tǒng)中,,IFFT變換后通過(guò)MIG接口將數(shù)據(jù)導(dǎo)入DDR2 SDRAM中,,這樣可以節(jié)省很多邏輯資源,DDR2 DRAM存儲(chǔ)模型如圖6所示,。之后通過(guò)系統(tǒng)定時(shí)(TIMER)對(duì)DDR2 SDRAM的數(shù)據(jù)讀取進(jìn)行控制,,將數(shù)據(jù)發(fā)送到TX模塊中。
3 硬件平臺(tái)搭建與測(cè)試
3.1 下載代碼到芯片中進(jìn)行實(shí)際測(cè)試結(jié)果
用Verilog HDL[6]編寫(xiě)testbench仿真驗(yàn)證無(wú)誤后,,用ISE10.1將FPGA程序下載到基帶板上的XILINX XC5VSX95T芯片中,,然后使用CCS軟件將DSP的相應(yīng)程序下載到TMS320C6455ZTZ芯片中。本硬件平臺(tái)中DSP發(fā)送25個(gè)資源塊(RB),,在DSP中設(shè)置軟復(fù)位,,對(duì)FPGA進(jìn)行復(fù)位控制。用chipscope觀察的從TX模塊輸出信號(hào)波形如圖7所示,。
圖7中,,tx_flag信號(hào)為高電平時(shí)表示輸出I_DATA_OUT和Q_DATA_OUT有效,I_DATA_OUT是IFFT變換后的實(shí)部,,Q_DATA_OUT是虛部,。
3.2 中頻信號(hào)在頻譜儀中的捕捉
基帶板的數(shù)據(jù)通過(guò)FPGA的引腳發(fā)送到中頻板中,在中頻板中進(jìn)行IQ調(diào)制,將頻譜搬移到中心頻率30.72 MHz上,,且?guī)捈s為5 MHz,,中心頻率在30.72 MHz上,帶寬約為4.5 MHz,,幅度在-25 DBm,,已滿(mǎn)足需求。
本文介紹了TD-LTE下行鏈路OFDM調(diào)制,,并重點(diǎn)介紹了子載波映射和基帶信號(hào)生成的原理,。然后基于TD-LTE無(wú)線終端綜合測(cè)試儀表的開(kāi)發(fā),提出了本系統(tǒng)中的基帶信號(hào)發(fā)送設(shè)計(jì)流程,。具體介紹了McBSP模塊,、系統(tǒng)定時(shí)模塊、IFFT變換,、DDR2 SDRAM等關(guān)鍵模塊,,然后在系統(tǒng)設(shè)計(jì)思路和硬件資源上提出了優(yōu)化方案。在仿真正確后,,基于基帶板和中頻板,,使用chipscope實(shí)際捕捉波形。最后在中頻板中通過(guò)頻譜儀分析了頻譜,,進(jìn)一步驗(yàn)證了FPGA實(shí)現(xiàn)基帶信號(hào)發(fā)送的正確性,。
參考文獻(xiàn)
[1] 沈嘉.3GPP長(zhǎng)期演進(jìn)(LTE)技術(shù)原理與系統(tǒng)設(shè)計(jì)[M].北京:人民郵電出版社,2008:143-154.
[2] 李小文,,李貴勇,,陳賢亮,等.第三代移動(dòng)通信系統(tǒng),、信令及實(shí)現(xiàn)[M].北京:人民郵電出版,,2003.
[3] 3GPP TS 36.211 v8.7.0:Physical channels and modulation(release 8)[S].2009.
[4] 3GPP TS 36.212 v8.7.0:Physical channels and modulation (release 8)[S].2009.
[5] Xilinx fast fourier transform V6.0 user guide.2008.
[6] 夏宇聞.Verilog數(shù)字系統(tǒng)設(shè)計(jì)教程.北京航空航天大學(xué)出版社[M],2003.