空間受限型應(yīng)用中的PMBus 熱插拔電路介紹
2012-08-16
作者:Timothy Hegarty
來源:德州儀器 (TI) 基礎(chǔ)電源產(chǎn)品線首席應(yīng)用工程師
摘要
本文詳細(xì)介紹了熱插拔電路基礎(chǔ),,以及要求使用系統(tǒng)保護(hù)與管理(SPM) 和印刷電路板(PCB) 基板面極其珍貴的情況下系統(tǒng)設(shè)計(jì)人員所面臨的諸多挑戰(zhàn)。以模塊化實(shí)現(xiàn)利用集成數(shù)字熱插拔控制器時(shí),,我們?yōu)槟榻B了一種框架,,用于檢查設(shè)計(jì)的各項(xiàng)重要參數(shù)和熱插拔系統(tǒng)保護(hù)電路的PCB 布局。另外,,文章還列出了相關(guān)實(shí)驗(yàn)結(jié)果報(bào)告,。
高密度系統(tǒng)的熱插拔電路保護(hù)
許多分布式電源系統(tǒng)(如圖1 所示)都集成了總線轉(zhuǎn)換器、負(fù)載點(diǎn)(POL) 與線性穩(wěn)壓器,,專用于高性能刀片式服務(wù)器、ATCA 解決方案和通信基礎(chǔ)設(shè)施系統(tǒng)[1],。這些系統(tǒng)越來越多地應(yīng)用于一些日益小型化的實(shí)現(xiàn)中,,旨在降低成本。為了保證這些系統(tǒng)擁有最大的可靠性和最長(zhǎng)的持續(xù)運(yùn)行時(shí)間,,熱插拔控制器[2]是首選方法,,因?yàn)樗梢蕴峁┳罾硐氲南到y(tǒng)保護(hù)和電管理,特別是能夠達(dá)到服務(wù)器市場(chǎng)的嚴(yán)格要求,。系統(tǒng)保護(hù)與管理(SPM) 功能專用卡邊緣的可用PCB 基板面已變得相當(dāng)狹小,,這并不讓人感到意外。這種情況帶來的結(jié)果是,,設(shè)計(jì)工作主要集中在了高功率密度,、低成本熱插拔電路實(shí)現(xiàn)上面。
圖1電信系統(tǒng)分布式電源架構(gòu)例子
在這類應(yīng)用中,,熱插拔控制器的特點(diǎn)是通常包括帶電電路板插入(浪涌電流控制)和拔取安全控制,、故障監(jiān)控診斷與保護(hù)以及高精確度電氣(電壓、電流,、功率)和環(huán)境(溫度)參數(shù)測(cè)量,,目的是提供實(shí)時(shí)的系統(tǒng)模擬或數(shù)字域遙測(cè)。特別是,,如果服務(wù)器機(jī)架一個(gè)線卡出現(xiàn)故障,,該故障應(yīng)隔離在該特定線卡,不會(huì)影響系統(tǒng)底板或者其他通過帶電底板供電的線卡,。熱插拔控制器正常情況下會(huì)通過接口連接至某個(gè)通過MOSFET,,其同電源通路串聯(lián),從而實(shí)現(xiàn)“開/關(guān)”功能和電流檢測(cè)低電阻分流器,。
圖2 顯示了典型服務(wù)器系統(tǒng)中為供電量身定做的線卡接口和熱插拔電路原理圖,,并為后續(xù)討論的模板。討論過程中,我們將不厭其煩地詳細(xì)描述熱插拔電路底板連接器邊緣插件板和下游組件,。
圖2典型的熱插拔電路布局
一般而言,,在一些+12V和+48V系統(tǒng)中,熱插拔通過器件(圖2 中MOSFET Q1)與高端連接配置,,并且其柵極連接至接地基準(zhǔn)控制器,。在–48V底板系統(tǒng)中,該控制器參考至48V電壓軌,,并且根據(jù)要求上下浮動(dòng),。在所有情況下,當(dāng)檢測(cè)到故障Q1 被熱插拔控制器迅速關(guān)閉時(shí),,必要時(shí)接地連接可不中斷,。
熱插拔模塊提供一種方便的標(biāo)準(zhǔn)化方法,實(shí)現(xiàn)一站式熱插拔解決方案,。這種模塊是一種單獨(dú),、獨(dú)立的子配件,它們是一些結(jié)構(gòu)相同,、超緊湊,、獨(dú)立自主、經(jīng)過完全驗(yàn)證和測(cè)試的組件,,完全適合于高容量SMT 制造,。同樣,它可在多個(gè)系統(tǒng)和應(yīng)用之間靈活地部署使用,,從而極大地減輕了系統(tǒng)工程師的設(shè)計(jì)工作負(fù)擔(dān),。熱插拔模塊通常以一種中間夾層的方式平行堆疊在系統(tǒng)主板上,利用鍍過孔(PTH) 或者表面貼裝(SMT) 接頭與電源和信號(hào)連接形成母子配置結(jié)構(gòu),。另外,,需要注意的是,主板通過模塊的終端連接提供導(dǎo)電散熱,。然而,,使用雙面模塊板布局時(shí),主要功耗組件通過MOSFET 和分流電阻器,,放置于模塊的頂部,,以有目的地利用應(yīng)用環(huán)境中的自然或者強(qiáng)制對(duì)流。
電路規(guī)范
表1列出了熱插拔電路模塊的相關(guān)規(guī)范,。
規(guī)范 |
符號(hào) |
值 |
輸入電壓范圍 |
VIN |
10.8V–13.2V |
輸出電流范圍 |
VBR |
0A–10A |
電流限制 |
ICL |
12.5A±8% |
斷路器電平 |
ICB |
22.5A |
故障超時(shí) |
TFAULT |
1 ms |
最大環(huán)境溫度 |
TA(MAX) |
55°C |
氣流速度 |
Q |
100 LFM (0.5 ms-1) |
可用PCB面積(不包括PMBus連接器) |
APCB |
15 mmx 18 mm |
數(shù)字遙測(cè)PMBusTM地址 |
Addr |
0x16 |
表1 熱插拔電路設(shè)計(jì)規(guī)范
在這種高功率密度熱插拔電路設(shè)計(jì)中,,下列局限性尤為明顯:
· 成本:電氣(MOSFET、控制器,、分流電阻器)和機(jī)械(連接器,、PCB)組件
· PCB 面積:嚴(yán)重受限
· 組件規(guī)范:體積受限(尺寸和外形)
· 熱規(guī)范和散熱屬性:基本散熱
電路原理圖和組件選擇
圖2 描述了建議熱插拔電路的原理圖。可以方便地將任何負(fù)載相關(guān)大容量存儲(chǔ)電容器,,靠近負(fù)載放置于主板上,,無需放置在熱插拔模塊上。
圖3數(shù)字熱插拔電路原理圖
表2 詳細(xì)列出了最基本的電路組件的封裝尺寸和廠商建議焊墊幾何尺寸,。
電路組件 |
廠商部件編號(hào) |
體積尺寸(mm) |
建議焊墊幾何尺寸(mm) |
通過MOSFET |
TI CSD17309Q3 |
3.3 x 3.3 x 1.0 |
3.5 x 2.45 |
分流器 |
Vishay WSL12062L000FEA18 |
3.2 x 1.6 x 0.64 |
3.5 x 2.45 |
熱插拔控制器 |
TI LM25066A |
4.0 x 5.0 x 1.0 |
4.2 x 5.4 |
TVS |
Vishay SMPC15A |
6.5 x 4.6 x 1.1 |
6.8 x 4.8 |
表2 熱插拔電路組件封裝尺寸和建議焊墊幾何尺寸
MOSFET, Q1
在我們的例子中,,我們使用了TI NexFET™ CSD17309Q3 [3],它是一種25°C下4.9 mW開態(tài)電阻的30V 60A SON器件,。如果圖4a的開態(tài)電阻溫度系數(shù)約為0.3%/°C,,則55°C工作結(jié)溫下滿負(fù)載傳導(dǎo)損耗為0.6W。柵極到源極齊納二極管將MOSFET VGS維持在額定電平(正負(fù)極),。2°C/W的穩(wěn)態(tài)結(jié)殼熱阻抗RthJ-C表明,,殼結(jié)溫升約為1.2°C。最大額定MOSFET 結(jié)溫為150°C,。故障狀態(tài)期間1 ms一次性脈沖時(shí)長(zhǎng)條件下,,圖4b 和4c的曲線圖分別表示50A、12V時(shí)的安全工作區(qū)(SOA) 大小,,以及0.001的標(biāo)準(zhǔn)化結(jié)到環(huán)境瞬態(tài)熱阻抗ZthJ-A。
圖4CSD17309Q3[3] MOSFET: a) Rdson隨溫度變化情況,;b) SOA; c)瞬態(tài)熱阻抗
分流電阻器RS
使用一個(gè)2 mΩ分流電阻器以后,,LM25066可提供12.5A的主動(dòng)電流限制(25 mV典型電流限制閾值電壓),并且精確度為±8%,。因此,,電流限制設(shè)置為額定滿負(fù)載電流的125%??焖僮饔脭嗦菲鞴δ茉O(shè)置為22.5A(45 Mv典型斷路閾值電壓),。
Vishay WSL1206-18系列分流電阻器擁有1% 容限和275 ppm電阻溫度系數(shù)。全部0.5W額定功率可用于70°C額定溫度,,但后續(xù)線性降低至170°C,。10A時(shí)的分流器功耗為0.2W。
熱插拔控制器U1
LM25066有一個(gè)I2C/SMBus接口(使用SCL,、SDA/SMBA和地址引腳連接)和一個(gè)PMBus兼容型指令結(jié)構(gòu),,以幫助執(zhí)行動(dòng)態(tài)系統(tǒng)配置和遙測(cè)。利用三個(gè)地址引腳,,設(shè)置PMBus地址,。分別使用1% 和2% 精確度測(cè)量電壓、電流和功率遙測(cè),。一個(gè)二極管連接的晶體管溫度傳感器,,幫助輕松、精確地進(jìn)行MOSFET 溫度測(cè)量。
TVS, Z1
電流中斷期間的電流轉(zhuǎn)換速率達(dá)到100A/µs甚至更大,,因此輸入功率通路中的電源軌總線結(jié)構(gòu)不可避免地存在寄生電感,。存儲(chǔ)于該電感中的能量傳輸至電路中其他組件,以產(chǎn)生過電壓動(dòng)態(tài)行為,。這種電感式電壓過沖,,會(huì)損害熱插拔MOSFET、熱插拔控制器和下游電路的可靠性,,除非對(duì)其進(jìn)行正確的控制,。按照?qǐng)D3 所示,使用一個(gè)快速響應(yīng)的單向TVS 二極管,,連接VIN 和GND,。它主要充當(dāng)需要中斷的差模電流的分流通路。
制約TVS[4]的一些因素包括電氣性能,、組件體積和成本,。一般而言,TVS 平衡電壓VR 等于或者大于DC 或者連續(xù)峰值工作電壓電平,。斷路事件期間承受峰值脈沖電流的TVS 鉗位電壓VC(MAX),,應(yīng)低于MOSFET 和控制器的絕對(duì)最大額定電壓。另外,,更高額定功率的TVS 擁有更大的電壓開銷,,因?yàn)樗膭?dòng)態(tài)阻抗更低。因此,,如果要求有更尖利的曲線圖拐點(diǎn),,則相比只根據(jù)峰值功率規(guī)范選擇的一般強(qiáng)制規(guī)定,選擇更大的TVS 要更加有利一些,。
輸入電壓范圍為12V±10%時(shí),,選擇15V Vishay Esmp系列TVS。該器件有一個(gè)陽極和兩個(gè)陰極連接,。1.1 mm的小體積,,讓它能夠安裝在PCB 的底部。
輸入電容器CIN
因其可以降低輸入阻抗并提供去耦功能,,本地輸入旁路電容有一定的作用,,但在熱插拔期間插入插件卡時(shí)對(duì)CIN充電的脈沖電流一般會(huì)損害電容器的可靠性,因此這種電容并不怎么實(shí)用,。當(dāng)電容器位于熱插拔電路前面時(shí),,許多OEM 廠商將其看作為一個(gè)系統(tǒng)級(jí)可靠性問題,因此一般不會(huì)安裝這種電容器,。
PCB 布局
圖5 顯示了一種緊湊,、高密度的電路PCB 布局,。圖6 顯示了該模塊的照片。熱插拔解決方案共占用300 mm2的PCB 面積,。TVS 和可選無源組件均位于PCB 的底部,。柵極線路和分流檢測(cè)線路均短路,并且未使用輸入去耦電容器,。使用表面貼裝端接,,將電源和信號(hào)連接至主板。
圖5熱插拔電路PCB 布局
基本組件位于頂部,,內(nèi)部各層主要構(gòu)成并行接地層,,用于散熱和降低傳導(dǎo)損耗。TVS 和各種可選組件位于底部,。散熱過孔位于MOSFET 漏極板和TVS 陰極上,,連接至內(nèi)部各層。請(qǐng)記住,,表面貼裝組件焊接的PCB 作為散熱的主要方法,。同樣,產(chǎn)生熱的一些組件,,可以利用 PC B層內(nèi)已經(jīng)有的一些銅質(zhì)多邊形材料,、層和熱過孔來提高其熱特性。使用邊緣端接將模塊化電路板連接至主板,,還可以幫助散熱,。如果重復(fù)脈沖鉗制期間出現(xiàn)通過MOSFET穩(wěn)態(tài)功耗和/或TVS 功耗,則板級(jí)散熱設(shè)計(jì)變得尤為重要,。這種熱插拔控制器設(shè)計(jì),通過在出現(xiàn)故障時(shí)鎖住電路或者在檢測(cè)到故障以后后續(xù)“重試”開始時(shí)提供足夠長(zhǎng)的暫停時(shí)間,,使這一問題得到緩解,。
圖6熱插拔模塊照片
實(shí)驗(yàn)結(jié)果
根據(jù)這種熱插拔控制器[2]實(shí)用實(shí)現(xiàn),人們想出了各種實(shí)驗(yàn)測(cè)量方法,,以對(duì)電路性能進(jìn)行評(píng)估:熱插拔帶電插入,、電流限制和短路保護(hù)。圖7a,、7b 和7c 分別描述了相關(guān)電路波形,。
就這方面來說,它允許在檢測(cè)到故障以前形成最高可能電流,,在圖2 所示電路輸出直接聲明的低阻抗短路特別令人討厭,。根據(jù)之前的一些考慮,同輸入通路串聯(lián)的寄生電感耦合高電流轉(zhuǎn)換速率,,可能會(huì)在向通過MOSFET 發(fā)送一條關(guān)閉指令以后在熱插拔控制器VIN 和SENSE 引腳上引起破壞性瞬態(tài)出現(xiàn),。圖7c突出顯示部分,,使用這種模塊時(shí)斷路事件期間的電流與電壓波形,被看作是良性的,。
圖7 熱插拔電路振蕩波形:a)啟動(dòng)前插入延遲熱插拔帶電插入,;b)鎖閉電流限制響應(yīng);c)輸出短路引起的熱插拔斷路事件
輸入電流達(dá)到23A(46mV分流電壓)時(shí),,如圖7c所示,,通過MOSFET 關(guān)閉(見綠色輸入電流線)。這時(shí)的輸入電壓有一個(gè)初始尖峰(原因是存在一些未鉗制寄生線路電感),,但在約18V 時(shí)迅速被TVS 鉗位,。
參考文獻(xiàn)
[1]服務(wù)器、基站,、ATCA 解決方案原理圖與設(shè)計(jì)考慮因互
[2]PMBus的LM25066系統(tǒng)電源管理與保護(hù)IC
[4]《熱插拔電路的TVS鉗制》,,作者:Hagerty, Timothy,TI,,刊發(fā)于2011 年10月《電源電子技術(shù)》
作者簡(jiǎn)介
Timothy Hegarty現(xiàn)任TI 電源產(chǎn)品部首席應(yīng)用工程師,。Tim畢業(yè)于愛爾蘭考克大學(xué)(University College Cork, Ireland) 電子工程學(xué)士學(xué)位和碩士學(xué)位。在加盟TI以前,,他曾效力于國家半導(dǎo)體和Artesyn Technologies,。他的研究領(lǐng)域?yàn)榧蒔WM 開關(guān)式穩(wěn)壓器與控制器、LDO,、基準(zhǔn),、熱插拔控制器、可再生能源系統(tǒng)和系統(tǒng)級(jí)模擬,。他是IEEE 會(huì)員,。