摘 要: 針對紋理圖像分割問題的研究,,經(jīng)典的多尺度MRF方法是對不同尺度的紋理特征僅通過多尺度序列下的MRF鄰域系統(tǒng)進(jìn)行描述,。為了更加準(zhǔn)確地描述紋理特征,將從空間分布特性與MRF鄰域系統(tǒng)兩個(gè)方面綜合考慮,,提出一種帶有聯(lián)合灰度信息的灰度共生矩陣與多尺度MRF相結(jié)合的方法,。實(shí)驗(yàn)結(jié)果表明,該方法能夠有效地提高分割準(zhǔn)確度,。
關(guān)鍵詞: 紋理圖像分割,;灰度共生矩陣;多尺度,;MRF
紋理作為一種自然屬性,,在一定程度上反映了物體的特征,,并且紋理具有抗遮擋能力強(qiáng)、受環(huán)境影響小等特點(diǎn),,因此常被用于區(qū)分背景與其他物體,。通常情況下,紋理可以采用基于模型的MRF(Markov Random Field)方法進(jìn)行描述,。單尺度MRF模型是空域模型,,常采用貝葉斯法進(jìn)行圖像分割。多尺度MRF模型是在不同分辨率的圖像上進(jìn)行分析,,它能捕捉到不同分辨率圖像的結(jié)構(gòu)信息以及具備更強(qiáng)的空間描述能力,,并且還具有計(jì)算復(fù)雜度低、收斂速度快,、減少過分割現(xiàn)象和較強(qiáng)的抗噪性能等特點(diǎn)[1],,因此多尺度MRF圖像分割受到廣泛關(guān)注。近幾年研究中,,陳曉惠等人[2]將形態(tài)小波域多尺度馬爾可夫模型應(yīng)用于紋理圖像分割中,,該模型結(jié)合了形態(tài)小波和MRF各自的優(yōu)勢,能夠?qū)D像進(jìn)行非線性多尺度分解,,因此提高了對紋理特征的描述,。對于多尺度MRF分割方法,不同尺度的紋理特征僅通過多尺度序列下的MRF鄰域系統(tǒng)進(jìn)行描述,,并且在起始分割中僅考慮了灰度特征而忽略了鄰域系統(tǒng)特性和像素在空間中的排列信息,。在統(tǒng)計(jì)方法中,灰度共生矩陣能夠有效地從空間中提取紋理特征[3],,并且灰度共生矩陣與MRF之間存在關(guān)聯(lián)性,,其中3個(gè)不相關(guān)的二次統(tǒng)計(jì)量就可作為紋理特征描述。僅用灰度信息,、距離判定,、無鄰域系統(tǒng)相關(guān)性或空間相關(guān)性描述紋理特征,具有一定的局限性,。為了解決該問題,,本文提出將帶有灰度信息的灰度共生矩陣與多尺度MRF相結(jié)合的方法進(jìn)行紋理圖像分割。
1 多尺度MRF與灰度共生矩陣下的紋理結(jié)構(gòu)
1.1 多尺度MRF
原始圖像經(jīng)過小波分解后可得到具有不同尺度的圖像數(shù)據(jù),,并依據(jù)尺度大小關(guān)系組成金字塔結(jié)構(gòu),。然后,在最大尺度圖像上利用低頻信號建立最大尺度下的MRF,,再依次以上層分割結(jié)果作為下層分割的基礎(chǔ)[4],。
圖像的多尺度MRF模型是通過建立特征場與標(biāo)號場來描述數(shù)據(jù)信息的。多分辨率特征場的多尺度序列表示為Y={Y0,Y1,,…,,YJ-1},標(biāo)號場表示為X={X0,,X1,,…,XJ-1},,其中特征場描述數(shù)據(jù)的特征,,標(biāo)號場描述分割結(jié)果的類別[2]。通常采用MRF二階鄰域系統(tǒng)(即某一像素與其鄰近像素的關(guān)系)的形式來表示紋理特征,,如圖1所示。由于二階鄰域系統(tǒng)未能詳細(xì)地描述出像素的空間排列信息,,因此在分割過程中可能會漏掉某些特征信息,。
與MRF不同,二次統(tǒng)計(jì)量是在空間分布上對紋理信息進(jìn)行描述[5],?;叶裙采仃囋诿枋黾y理時(shí)缺少了局部細(xì)節(jié)信息,可以通過MRF的鄰域系統(tǒng)來彌補(bǔ),。反之,,MRF空間信息的缺失也可以通過灰度共生矩陣得到補(bǔ)充。
2 基于灰度共生矩陣和多尺度MRF的紋理圖像分割
以灰度共生矩陣為基礎(chǔ)提取的3個(gè)互不相關(guān)的二次統(tǒng)計(jì)量熵,、對比度與相關(guān)性,,可以很好地從空間分布方面來描述圖像的紋理[6]。為了更加準(zhǔn)確地描述紋理特征,,可將3個(gè)互不相關(guān)的統(tǒng)計(jì)量與灰度信息共同用于描述最大尺度下的紋理信息,,形成特征矩陣C=[f1 f2 f3 f4],然后進(jìn)行FCM聚類,。
基于灰度共生矩陣和多尺度MRF圖像分割方法流程如圖3所示,,具體步驟如下:
(1)設(shè)定圖像的分類數(shù)K,、勢團(tuán)參數(shù)β以及算法迭代次數(shù),。
(2)對圖像作n=J-1層小波分解,,利用灰度共生矩陣提取特征,,并與灰度信息共同獲得特征矩陣,利用FCM獲得起始分割結(jié)果,。
?。?)由聚類算法的標(biāo)號計(jì)算出尺度J上的標(biāo)號場能量,進(jìn)行參數(shù)估計(jì),計(jì)算特征場能量,,利用能量最小原則,,得出該尺度分割結(jié)果。
?。?)將該尺度的計(jì)算結(jié)果直接映射到最鄰近的高分辨率圖像上作為初始分割,。
(5)進(jìn)行參數(shù)估計(jì),,計(jì)算標(biāo)號場能量,,計(jì)算特征場能量,更新迭代條件當(dāng)能量最小時(shí)計(jì)算停止,。
3 實(shí)驗(yàn)結(jié)果與分析
選取256×256的合成紋理圖像,、256×256的遙感圖像和來自Berkeley圖像庫編號為86016的481×321自然景物紋理圖像。實(shí)驗(yàn)選取灰度共生矩陣步長為1,,方向選取0°,、45°、90°,、135°,。紋理合成圖像灰度共生矩陣選取7×7的滑動(dòng)窗口,勢團(tuán)參數(shù)=5.5,,迭代100次,;遙感圖像選取5×5的滑動(dòng)窗口,勢團(tuán)參數(shù)β=0.9,,迭代50次,;自然景物圖像選擇33窗口,勢團(tuán)參數(shù)β=0.9,,迭代50次,。實(shí)驗(yàn)平臺為Matlab 7.8.0,圖4為分割效果圖,,其中,,第1列至第5列分別為:實(shí)驗(yàn)原圖、手工標(biāo)注圖,、灰度共生矩陣分割結(jié)果,、多尺度MRF分割結(jié)果、本文方法分割結(jié)果,。為了能夠定量分析分割結(jié)果,,本文將采用整體分類精度和Kappa系數(shù)作為評價(jià)指標(biāo),結(jié)果如表1所示,。
從表1可以看出,,針對3種類型紋理圖像,,本文方法獲得的分割結(jié)果要明顯優(yōu)于灰度共生矩陣法與多尺度MRF法。其中,,對于合成紋理圖像,,本文方法的整體分類精度為99.03%,Kappa系數(shù)為97.95%,,均高于灰度共生矩陣法與多尺度MRF法,;對于遙感圖像,本文方法的整體分類精度為96.66%,,Kappa系數(shù)為90.12%,,均高于灰度共生矩陣法與多尺度MRF法;對于自然景物圖像,,本文方法的整體分類精度為98.34%,,Kappa系數(shù)為96.13%,也均高于灰度共生矩陣法與多尺度MRF法,。綜合考慮,,在平均整體分類精度方面,本文方法比多尺度MRF法高出2.96%,,比灰度共生矩陣法高出5.94%,;在平均Kappa系數(shù)方面,,本文方法比多尺度MRF法高出1.72%,,比灰度共生矩陣法高出12.12%。實(shí)驗(yàn)表明,,本文提出的紋理圖像分割方法不僅提高了分割準(zhǔn)確度,,還提高了分割的一致性。
本文提出了一種基于灰度共生矩陣和多尺度MRF紋理圖像的分割方法,。首先,,采用小波分解獲得圖像各個(gè)尺度的數(shù)據(jù)信息,之后在最大尺度上結(jié)合灰度信息以及由灰度共生矩陣獲得的二次統(tǒng)計(jì)量進(jìn)行FCM聚類,,作為最大尺度上MRF的起始分割,;其次,依照起始分割的標(biāo)號再進(jìn)行當(dāng)前尺度MRF的分割,,建立特征場與標(biāo)號場,,獲得當(dāng)前尺度最終的分割結(jié)果;最后,,當(dāng)前分割結(jié)果作為鄰近高分辨率圖像的起始分割再進(jìn)行優(yōu)化,。實(shí)驗(yàn)表明,本文方法分割紋理圖像的準(zhǔn)確度與Kappa系數(shù)高于多尺度MRF方法和灰度共生矩陣的方法,。在后續(xù)的研究中,,將探討如何提高算法的運(yùn)算速度,。
參考文獻(xiàn)
[1] 劉國英,馬國銳,,王雷光,,等.基于Markov隨機(jī)場的小波域圖像建模及分割[M].北京:科學(xué)出版社,2010.
[2] 陳曉惠,,鄭晨,,段汕,等.形態(tài)小波域多尺度馬爾可夫模型在紋理圖像分割中的應(yīng)用[J].中國圖象圖形學(xué)報(bào),,2011,,16(5):761-766.
[3] 韋玉春,湯國安,,楊昕,,等.遙感數(shù)字處理教程[M].北京:科學(xué)出版社,2009.
[4] Zheng C,, Liu G,, Hu Y, et al. Image segmentation based on multiresolution Markov random field with fuzzy constraintin wavelet domain[J]. IET Image Process,,2012,,6(3):213-221.
[5] MRIDULA J, KUNDAN C,, DIPTI P. Combining GLCM features and Markov random field model for colour textured image segmentation[C]. IEEE Conference on Devices and Communications(ICDeCom2011),,2011:1-5.