《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 顯示光電 > 業(yè)界動(dòng)態(tài) > 基于噪點(diǎn)檢測(cè)的中值濾波圖像去噪方法

基于噪點(diǎn)檢測(cè)的中值濾波圖像去噪方法

2016-01-21
作者:唐 寧,,呂 洋
來(lái)源:2015年微型機(jī)與應(yīng)用第5期

  摘  要圖像去噪是圖像處理中一個(gè)非常重要的環(huán)節(jié),。針對(duì)傳統(tǒng)中值濾波方法存在的不足,提出一種新的基于噪點(diǎn)檢測(cè)的自適應(yīng)中值濾波圖像去噪方法,。該方法通過(guò)自適應(yīng)地改變?yōu)V波窗口的大小,局部檢測(cè)并判斷極值點(diǎn)是否為噪聲點(diǎn),有效地降低了非噪聲點(diǎn)誤判為噪聲點(diǎn)的概率,。實(shí)驗(yàn)結(jié)果表明,該方法能夠更有效地去除圖像中的噪聲,,并較好地保持圖像細(xì)節(jié)和邊緣,。

  關(guān)鍵詞: 圖像去噪;中值濾波,;噪點(diǎn)檢測(cè)方法

0 引言

  圖像是對(duì)外界信息識(shí)別的重要途徑,,圖像的清晰度直接影響到人們對(duì)外界的識(shí)別以及進(jìn)一步分析。在圖像采集傳輸過(guò)程中由于外界噪聲的干擾,,會(huì)削弱或消除一些圖像基本信息,,進(jìn)一步導(dǎo)致圖像質(zhì)量的降低,。對(duì)加入噪聲的圖像可以通過(guò)平滑、濾波等一系列預(yù)處理來(lái)改善圖像質(zhì)量,。

  中值濾波被廣泛應(yīng)用于圖像去噪中,。它不同于一般的模板,中值濾波采用周?chē)徲蛳袼氐闹虚g值來(lái)代替,,能夠較高地保留高頻信號(hào),,使圖像能更好地保持邊緣清晰[1]。本文通過(guò)對(duì)中值濾波及其改進(jìn)的算法進(jìn)行研究,,提出了一種基于噪點(diǎn)檢測(cè)的中值濾波圖像去噪方法,,通過(guò)實(shí)驗(yàn)對(duì)比進(jìn)一步體現(xiàn)改進(jìn)方法的優(yōu)勢(shì),使其能夠更好地保留原始圖像的細(xì)節(jié)及邊緣,。

1 圖像噪聲及圖像質(zhì)量評(píng)估方法

  1.1 圖像噪聲

  圖像噪聲主要是源于圖像的獲取和傳輸,,在此過(guò)程中受到了外界隨機(jī)信號(hào)的干擾,從而影響人們對(duì)其信息的接收,。因而描述噪聲的方法完全可以借用隨機(jī)過(guò)程的描述,,即使用概率分布函數(shù)和概率密度分布函數(shù)[2]。圖像中的噪聲,,可以根據(jù)概率密度函數(shù)分為高斯噪聲,、瑞利噪聲、脈沖噪聲等,;依據(jù)噪聲頻譜分類可將其分為:白噪聲,、1/f噪聲、三角噪聲等[2],。本文中將主要對(duì)椒鹽噪聲進(jìn)行去噪分析,。

  1.2 圖像質(zhì)量評(píng)估方法

  圖像質(zhì)量主要包含圖像的逼真度與可懂度[2],。目前,,主要通過(guò)均方誤差和峰值信噪比來(lái)客觀地對(duì)圖像質(zhì)量進(jìn)行評(píng)估:

  均方誤差:

  12.jpg

  其中f(x,,y)、f′(x,,y)分別是原始圖像和降質(zhì)圖像復(fù)原后的圖像中點(diǎn)(x,,y)的灰度值,M和N分別是以像素點(diǎn)數(shù)表征的圖像的長(zhǎng)度和寬度[2],。L為數(shù)字圖像的灰度級(jí)數(shù),。根據(jù)以上數(shù)值來(lái)評(píng)估圖像質(zhì)量,MSE越小則表明圖像恢復(fù)后的質(zhì)量越高,,PSNR越大則表明圖像視覺(jué)效果越好,。

2 中值濾波

  中值濾波是對(duì)中心像素點(diǎn)的鄰域進(jìn)行處理,其處理方式不能用一個(gè)線性表達(dá)式來(lái)表示,。某個(gè)像素點(diǎn)的濾波結(jié)果就是用濾波器包圍的圖像區(qū)域中像素的灰度值的中值來(lái)替代該像素的值,。用數(shù)學(xué)公式表達(dá)如下:

  3.png

  其中,,f(x,y)為濾波輸出,,sxy表示以(x,,y)為中心的濾波窗口中的所有坐標(biāo)點(diǎn);g(x,,y)為坐標(biāo)點(diǎn)(x,,y)處的灰度值,median表示對(duì)其進(jìn)行中值處理,。傳統(tǒng)中值濾波算法通過(guò)設(shè)定不同大小的窗口進(jìn)行濾波,,對(duì)該滑動(dòng)窗口內(nèi)的像素點(diǎn)灰度值排序,取中值作為當(dāng)前像素點(diǎn)的灰度值[3],。

3 算法分析

  針對(duì)傳統(tǒng)中值濾波方法,,參考文獻(xiàn)[4]提出了一種改進(jìn)的自適應(yīng)中值濾波方法,取得了較好的濾波效果,,但對(duì)于去除高密度噪聲圖像效果較差,,對(duì)于圖像邊緣細(xì)節(jié)處理不夠,容易噪聲邊緣模糊,。

  參考文獻(xiàn)[5]中利用噪聲像素點(diǎn)的性質(zhì),,首先計(jì)算含噪聲圖像的噪聲污染率,通過(guò)求得污染率與中心權(quán)值的先驗(yàn)函數(shù),,提出了一種有效的自適應(yīng)濾波算法,,但該算法計(jì)算較為復(fù)雜,并不易于實(shí)現(xiàn),。

  參考文獻(xiàn)[6-7]提出了基于統(tǒng)計(jì)思想的中值濾波算法,其通過(guò)將像素模板中的一個(gè)灰度值與其他的值進(jìn)行比較[7],,分別統(tǒng)計(jì)出大于和小于這個(gè)灰度值的像素個(gè)數(shù),,若兩組像素個(gè)數(shù)相同,則表明此灰度值為中值,,否則繼續(xù)選擇下一灰度值作為比較,,該統(tǒng)計(jì)思想需要將選取灰度值與窗口內(nèi)每個(gè)像素點(diǎn)進(jìn)行比較。

  參考文獻(xiàn)[8]提出一種有效的開(kāi)關(guān)中值濾波算法,,先通過(guò)對(duì)噪聲進(jìn)行分類,,然后運(yùn)用迭代的方法對(duì)其進(jìn)行濾波,但該方法在強(qiáng)噪聲時(shí)迭代所需要的處理時(shí)間較長(zhǎng),。

  傳統(tǒng)的濾波方法中,,缺乏對(duì)椒鹽噪聲中極值點(diǎn)是否為噪聲點(diǎn)的判斷,從而容易造成圖像邊緣模糊,,極大地增大了對(duì)非噪聲點(diǎn)誤判的可能性[9],。根據(jù)以上算法分析,,本文提出了一種新的改進(jìn)算法。

4 改進(jìn)的中值濾波

  4.1 三態(tài)中值濾波算法原理

  三態(tài)中值濾波[10]是將標(biāo)準(zhǔn)中值濾波和中心加權(quán)濾波算法結(jié)合,,并對(duì)其進(jìn)行改進(jìn)的一種濾波算法,。在三態(tài)中值濾波中,通過(guò)比較中值濾波及中心加權(quán)濾波的原始像素值和其中心像素值,,得出合適的輸出像素值,。其原理如圖1所示。

001.jpg

  標(biāo)準(zhǔn)中值濾波算法(Standard Median filter,,SM),,其定義為:

  f(x,y)SM=median{g(x,,y)|g(x,,y)∈Nf(x,y)}(4)

  其中g(shù)(x,,y)為任意像素點(diǎn)的灰度值,,Nf(x,y)表示f(x,,y)的實(shí)心鄰域[10],。

  中心加權(quán)濾波算法(Center Weighted Median filter,CWM),,其可定義為:

  f(x,,y)CWM=med{kxf(x,y),,f(r,,s)|f(r,s)∈Npc(x,,y)}(5)

  其中Npc(x,,y)表示像素點(diǎn)p(x,y)的空心鄰域,,f(x,,y)表示像素點(diǎn)的灰度值,f(r,,s)表示Npc(x,,y)內(nèi)所有像素點(diǎn)對(duì)應(yīng)的灰度值[2]。中心加權(quán)中值濾波主要是對(duì)中心像素加權(quán)后,,將其鄰域像素進(jìn)行分組,,在以中值分組的兩組中分別排序計(jì)算出中值,通過(guò)比較,,來(lái)計(jì)算求得最終的輸出中值,。

  對(duì)于三態(tài)中值濾波(Tri-State Median filter,,TSM),其遵循下述公式:

  6.png

  在式(6)中T為閾值,,f(x,,y)為像素點(diǎn)的灰度值,  f(x,,y)sm為標(biāo)準(zhǔn)中值,,如式(4)所示,f(x,,y)cwm中心加權(quán)濾波的輸出如式(5)所示,,d1為像素灰度值與標(biāo)準(zhǔn)中值之差的絕對(duì)值,如式(7)所示,,d2為像素灰度值與中心加權(quán)濾波輸出值之差的絕對(duì)值,,如式(8)所示:

  d1=|f(x,y)-f(x,,y)SM|(7)

  d2=|f(x,,y)-f(x,y)CWM|(8)

  以上公式中,,可以證明,。

  @797CM42]WPGUDB`W]K{6RN.jpg

  三態(tài)中值濾波算法結(jié)合了標(biāo)準(zhǔn)中值濾波和中心加權(quán)濾波算法的優(yōu)點(diǎn),通過(guò)設(shè)置閾值T作為判斷條件,,更好地保留了圖像細(xì)節(jié),。

  4.2 本文改進(jìn)算法

  椒鹽噪聲在圖像像素點(diǎn)中表現(xiàn)為極大值或極小值[10]。在對(duì)圖像進(jìn)行去噪之前,,針對(duì)圖像像素點(diǎn)的特殊性,,可將像素點(diǎn)分為非噪聲點(diǎn)、噪聲點(diǎn)和圖像細(xì)節(jié)點(diǎn),,從而在處理中保護(hù)非噪聲點(diǎn)[11],。在圖像噪聲點(diǎn)檢測(cè)中,處于極值點(diǎn)之間的噪聲點(diǎn)可以進(jìn)行全局檢測(cè),,從而判定其是否為噪聲點(diǎn),但對(duì)于極值點(diǎn)并不能判定其是否為噪聲點(diǎn),。在本文中,,基于噪點(diǎn)檢測(cè)的中值圖像去噪方法主要引進(jìn)一種局部圖像噪聲點(diǎn)檢測(cè)算法,先通過(guò)全局檢測(cè)判斷后,,再對(duì)極值點(diǎn)進(jìn)行局部檢測(cè),,其主要目的是為了判別極值點(diǎn)的像素點(diǎn)是否為噪聲點(diǎn),從而通過(guò)降低誤判率來(lái)保護(hù)圖像細(xì)節(jié),。

  本文提出了基于噪點(diǎn)檢測(cè)的中值濾波圖像去噪方法,,該方法主要在兩方面進(jìn)行了改進(jìn):

 ?。?)通過(guò)設(shè)置閾值,對(duì)圖像內(nèi)像素點(diǎn)判斷其是否為極值點(diǎn),,并對(duì)其進(jìn)行區(qū)分,;

  (2)在局部檢測(cè)時(shí),,通過(guò)自適應(yīng)地?cái)U(kuò)展窗口大小,,判斷極值點(diǎn)是否為噪聲點(diǎn)。

  最后通過(guò)與中心加權(quán)濾波和三態(tài)中值濾波算法進(jìn)行比較,,從主觀圖像觀察和客觀數(shù)值比較來(lái)證實(shí)本文方法的優(yōu)越性,。

  4.2.1噪點(diǎn)檢測(cè)中濾波窗口的選擇

  在篩選圖像噪點(diǎn)中,濾波窗口的大小對(duì)濾波效果有巨大的影響,。當(dāng)濾波窗口取值較小時(shí),,易于保護(hù)圖像細(xì)節(jié)但去噪效果較差;當(dāng)濾波窗口較大時(shí),,去噪效果較好,,但卻使圖像模糊程度增大。

  如圖2所示,,該圖表示加噪圖像中局部區(qū)域的灰度值,,當(dāng)加入噪聲密度較大時(shí),較小的濾波窗口不能正確判斷中心像素是否為噪聲點(diǎn),,增大了對(duì)中心像素誤判的可能性,。在圖2(a)中,3×3的濾波窗口中有6個(gè)噪聲極大值點(diǎn),,在噪點(diǎn)檢測(cè)中該F<T(F為像素點(diǎn)與其窗口鄰域內(nèi)像素點(diǎn)灰度值的差的絕對(duì)值之和的均值),,則該點(diǎn)被判定為非噪聲點(diǎn);若增大濾波窗口,,降低了極值點(diǎn)對(duì)F值的影響,,如圖2(b)所示,選取5×5濾波窗口F>T,,該中心像素被判定為噪聲點(diǎn),。

002.jpg

  在濾除圖像噪點(diǎn)中,窗口的大小對(duì)于去噪效果有重要的影響,,滑動(dòng)濾波窗口可以根據(jù)對(duì)圖像噪聲點(diǎn)的判斷自適應(yīng)地調(diào)節(jié)窗口大小,。當(dāng)濾波窗口較小時(shí),易于保護(hù)圖像細(xì)節(jié),,但去噪性能不好,;當(dāng)濾波窗口較大時(shí),去噪性能較好,但圖像易于被模糊,。如圖3中,,圖3(a)為原圖,圖3(b)為3×3濾波窗口,,圖3(c)為5×5濾波窗口,,圖3(d)為7×7濾波窗口。在圖3中明顯地可以看出,,當(dāng)選取7×7濾波窗口時(shí),,圖像較為模糊,去噪性能大大降低,。

003.jpg

  4.2.2 改進(jìn)算法步驟

 ?。?)輸入值為f(x,y),,F(xiàn),,Gmin,Gmax及閾值T,;其中   f(x,,y)為圖像像素點(diǎn)的灰度值,F(xiàn)為像素點(diǎn)與其窗口鄰域內(nèi)像素點(diǎn)灰度值的差的絕對(duì)值之和的均值,,Gmin與Gmax分別為圖像全部像素灰度值的最大值和最小值,,選取w=w×w為滑動(dòng)濾波窗口大小。

 ?。?)首先對(duì)圖像所有像素點(diǎn)進(jìn)行檢測(cè),,若滿足式(9):

  9.png

  則該像素點(diǎn)為非噪聲點(diǎn),保持其灰度值不變,。

 ?。?)若不滿足式(9),則進(jìn)行局部檢測(cè),。選擇3×3的滑動(dòng)濾波窗口,,計(jì)算該滑動(dòng)窗口中像素點(diǎn)的三態(tài)中值濾波fTSM,若滿足:

  10.png

  則對(duì)于當(dāng)前滑動(dòng)窗口,,計(jì)算F的值,,若F小于其閾值T,則該像素點(diǎn)為非噪聲點(diǎn),;若其F大于T,,則像素點(diǎn)為噪聲點(diǎn)。

 ?。?)若不滿足式(10),擴(kuò)展濾波窗口為5×5,,即窗口大小為w=(w+2)×(w+2),,則返回至步驟(3)重新計(jì)算F及fTSM進(jìn)行判別,。

  4.3 算法流程圖

  本文基于圖像噪點(diǎn)檢測(cè)的改進(jìn)三態(tài)中值濾波算法流程圖如圖4所示。

004.jpg

  4.4 本文去噪算法結(jié)果分析

  在實(shí)驗(yàn)仿真中,,以MATLAB作為仿真平臺(tái),,選取了256×256的camerman.jpg圖像作為主要測(cè)試圖像,測(cè)試中加入了0.08的椒鹽噪聲,,其閾值設(shè)定為15,,5×5的滑動(dòng)窗口作為最大滑動(dòng)窗口,其權(quán)值設(shè)為11,;選取3×3的滑動(dòng)窗口作為最小的滑動(dòng)窗口,,其權(quán)值設(shè)為3,依據(jù)以上算法,,對(duì)中心加權(quán)濾波算法做了仿真測(cè)試,,并進(jìn)行對(duì)比測(cè)試,結(jié)果如圖5~圖7所示,。去噪后的MSE值及PSNR/dB值如表1,、表2所示。

  通過(guò)對(duì)camerman,、lena,、Peppers等多幅圖像進(jìn)行測(cè)試,結(jié)果表明中心加權(quán)濾波算法對(duì)鄰域像素的中心元素進(jìn)行了加權(quán),,權(quán)值的增大可能會(huì)導(dǎo)致輸入鄰域像素點(diǎn)灰度值的增大,,它根據(jù)窗口內(nèi)像素權(quán)值的不同來(lái)調(diào)節(jié)圖像細(xì)節(jié)和噪聲的矛盾,但卻降低了消除噪聲的能力,。

  基于噪點(diǎn)檢測(cè)的中值濾波去噪方法結(jié)合了標(biāo)準(zhǔn)中值濾波和中心加權(quán)濾波,,通過(guò)設(shè)定閾值T判斷像素點(diǎn)是否為極值點(diǎn),并通過(guò)自適應(yīng)的調(diào)節(jié)窗口大小局部檢測(cè)極值點(diǎn)是否為噪聲點(diǎn),,其降低了誤判的可能性,,能夠更好地篩選噪聲點(diǎn),從而更好地保持了圖像細(xì)節(jié)并且更好地去除椒鹽噪聲,。

5 結(jié)論

  本文主要對(duì)加入椒鹽噪聲的圖像采用基于噪點(diǎn)檢測(cè)的中值濾波圖像去噪算法進(jìn)行去噪處理,。在該方法中,首先對(duì)圖像像素點(diǎn)進(jìn)行極值點(diǎn)分類,,通過(guò)自適應(yīng)的改變滑動(dòng)濾波窗口大小判斷極值點(diǎn)是否為噪聲點(diǎn),,從而降低了噪聲點(diǎn)誤判的概率,更為有效地去除了噪聲,。實(shí)驗(yàn)結(jié)果表明,,與傳統(tǒng)的中值濾波方法相比,基于噪點(diǎn)檢測(cè)的中值圖像去噪方法能夠有效地去除圖像中的椒鹽噪聲,并能夠較好的保持圖像特征完整,。

參考文獻(xiàn)

  [1] 趙海麗,,劉艷霞,陳智強(qiáng),,等.數(shù)字視頻圖像傳輸中基于FPGA的圖像去噪方法[J].吉林大學(xué)學(xué)報(bào):信息科學(xué)版,,2012,29(6):600-606.

  [2] 陸天華.數(shù)字圖像處理[M].北京:清華大學(xué)出版社,,2007.

  [3] SHUKLA A K,, BHATEJA V, VERMA R L,, et al. An improved directional weighted median filter for restoration of images corrupted with high density impulse noise[C]. Optimization,, Reliabilty, and Information Technology (ICROIT),, 2014 International Conference on. IEEE,, 2014: 506-511.

  [4] CHANG C C,HSIAO J Y,,HSIEH C P. An adaptive median filter for image denoising[C]. Intelligent Information Technology Application,, 2008.IITA′08.Second International Symposium on. IEEE, 2008:346-350.

  [5] 金良海,,熊才權(quán),,李德華.自適應(yīng)型中心加權(quán)的中值濾波器[J].華中科技大學(xué)學(xué)報(bào):自然科學(xué)版,2008,,36(8):9-12.

  [6] 李元帥,,張勇,周?chē)?guó)忠,,等.圖像中值濾波硬件算法及其在FPGA中的實(shí)現(xiàn)[J].計(jì)算機(jī)應(yīng)用,,2006,26(B06):61-62.

  [7] 董付國(guó),,原達(dá),,王金鵬.中值濾波快速算法的進(jìn)一步思考[J].計(jì)算機(jī)工程與應(yīng)用,2007,,43(26):48-49.

  [8] WANG Z,, ZHANG D. Progressive switching median filter for the removal of impulse noise from highly corrupted images[J]. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on,,1999,,46(1):78-80.

  [9] 王宇新,賀圓圓,,郭禾,,等.基于FPGA的快速中值濾波算法[J].計(jì)算機(jī)應(yīng)用研究,,2009,26(1):225-226.

  [10] HORNG S J,, HSU L Y,, LI T, et al. Using sorted switching median filter to remove high-density impulse noises[J]. Journal of Visual Communication and Image Representation,, 2013,4(7):956-967.

  [11] RAMAMOORTHY K,, CHELLADURAI T,, SUNDARARAJAN P, et al. Noise suppression using weighted median filter for improved edge analysis in ultrasound kidney images[J]. Int. J. Comp. Sci. Mobile Comput,,2014(3):97-105.


本站內(nèi)容除特別聲明的原創(chuàng)文章之外,,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點(diǎn),。轉(zhuǎn)載的所有的文章,、圖片、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有,。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無(wú)法一一聯(lián)系確認(rèn)版權(quán)者,。如涉及作品內(nèi)容、版權(quán)和其它問(wèn)題,,請(qǐng)及時(shí)通過(guò)電子郵件或電話通知我們,,以便迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟(jì)損失,。聯(lián)系電話:010-82306118,;郵箱:[email protected]