《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 嵌入式技術(shù) > 設(shè)計應(yīng)用 > 結(jié)合DM8168的實時運動目標檢測系統(tǒng)設(shè)計
結(jié)合DM8168的實時運動目標檢測系統(tǒng)設(shè)計
2015年微型機與應(yīng)用第14期
姚燦榮,劉韶濤
(華僑大學(xué) 計算機科學(xué)與技術(shù)學(xué)院,福建 廈門 361021)
摘要: 結(jié)合DM8168多核多通道的特點,,設(shè)計了一個實時運動目標檢測系統(tǒng),能夠?qū)崿F(xiàn)視頻數(shù)據(jù)的采集,、實時運動檢測、編解碼以及傳輸?shù)裙δ?。采用ViBe的目標檢測算法,,并利用中值濾波進行改進,解決了背景中容易出現(xiàn)Ghost區(qū)的問題,,提高了運動目標識別能力,。最后采用像素掃描標記法實現(xiàn)了目標跟蹤。實驗結(jié)果表明,,所提出的方法能在達芬奇平臺上實現(xiàn)實時魯棒的運動目標檢測和跟蹤,。
Abstract:
Key words :

  摘  要: 結(jié)合DM8168多核多通道的特點,設(shè)計了一個實時運動目標檢測系統(tǒng),,能夠?qū)崿F(xiàn)視頻數(shù)據(jù)的采集,、實時運動檢測、編解碼以及傳輸?shù)裙δ?。采用ViBe的目標檢測算法,,并利用中值濾波進行改進,解決了背景中容易出現(xiàn)Ghost區(qū)的問題,,提高了運動目標識別能力,。最后采用像素掃描標記法實現(xiàn)了目標跟蹤。實驗結(jié)果表明,,所提出的方法能在達芬奇平臺上實現(xiàn)實時魯棒的運動目標檢測和跟蹤,。

  關(guān)鍵詞智能監(jiān)控;目標檢測,;中值濾波;像素標記法

0 引言

  迅速發(fā)展的視頻監(jiān)控在日常生活中起著十分重要的作用,,實時處理和智能化分析已經(jīng)成為視頻監(jiān)控發(fā)展的一種趨勢,。當(dāng)前,,TI公司推出的TMS320DM8168 Davinci平臺集成了多個處理器與高效的異構(gòu)多核和多通道軟件開發(fā)框架,極大地滿足了人們對高集成度,、多功能視頻監(jiān)控的需求,。本文綜合利用DM8168及其異構(gòu)多核視頻的開發(fā)套件DVRRDK,設(shè)計并實現(xiàn)了嵌入式平臺的實時運動目標檢測系統(tǒng),。

  傳統(tǒng)的運動目標檢測方法[1]存在魯棒性較低,,計算量較大且適應(yīng)復(fù)雜背景變化的問題。為了適應(yīng)嵌入式平臺的軟硬件系統(tǒng),,本文采用并改進ViBe運動目標檢測算法,,在運動檢測中能有效應(yīng)對光照變化和抖動等影響,而且計算量非常小,。最后,,在檢測的基礎(chǔ)上利用像素掃描標記方法[2-4]對目標進行分類,根據(jù)分類結(jié)果實現(xiàn)運動目標的跟蹤,。

1 系統(tǒng)結(jié)構(gòu)設(shè)計與實現(xiàn)

  1.1 總體結(jié)構(gòu)設(shè)計

  系統(tǒng)采用TI DM8168評估板,,由一塊負責(zé)視頻處理的母板和一塊主要負責(zé)輸入輸出的子板組成,系統(tǒng)高度集成了Cortex-A8主處理器,、視頻處理子系統(tǒng)VPSS,、C674x DSP、3D加速模塊等,。視頻采集采用子板上的TVP5158芯片,,采用Linux操作系統(tǒng)下的TCP/IP協(xié)議進行網(wǎng)絡(luò)傳輸,VPSS用來實現(xiàn)本地顯示,。一個網(wǎng)絡(luò)監(jiān)控系統(tǒng)主要包括視頻采集,、編碼、處理,、網(wǎng)絡(luò)發(fā)送,、傳輸、接收,、解碼與播放等模塊,,整體框架如圖1所示。

001.jpg

  攝像頭將采集的模擬信號譯碼成數(shù)字視頻YUV格式后交給DM8168進行處理,,算法主要是在DSP上實現(xiàn),,在Video-M3協(xié)處理器上實現(xiàn)編解碼,本地回放與測試通過Vpss-M3實現(xiàn),,Cortex-A8核協(xié)調(diào)各處理器運行,,把處理后的視頻幀通過Linux下的網(wǎng)絡(luò)設(shè)備驅(qū)動發(fā)送到網(wǎng)絡(luò)。

  1.2 系統(tǒng)軟件的實現(xiàn)

  1.2.1 系統(tǒng)軟件框架

002.jpg

  為了實現(xiàn)視頻監(jiān)控的基本功能,系統(tǒng)采用DVRRDK開發(fā)套件,,基于MCFW[5]軟件框架,,其結(jié)構(gòu)如圖2所示。本系統(tǒng)主要由3個從處理器和1個主處理器構(gòu)成,,主處理器為Cortex-A8,,負責(zé)外圍設(shè)備驅(qū)動、引導(dǎo),、加載各個從處理器等,。3個從處理器分別負責(zé)視頻捕獲、播放,、隔行轉(zhuǎn)逐行,、視頻的編解碼、運動目標檢測等各類視頻處理計算,。本系統(tǒng)MCFW API包含4個子系統(tǒng):視頻捕獲,、視頻顯示、視頻編碼和視頻解碼子系統(tǒng),。各個子系統(tǒng)由若干Link API構(gòu)成,,MCFW API通過其下層的Link API實現(xiàn),構(gòu)成視頻處理數(shù)據(jù)通路,。

  1.2.2 視頻處理數(shù)據(jù)通路

  系統(tǒng)的VPSS-M3通過CaptureLink獲得一路視頻數(shù)據(jù)并傳給DSP,,經(jīng)過DSP視頻算法的處理后進行編碼,然后經(jīng)過DupLink復(fù)制出兩路視頻數(shù)據(jù),,一路進行本地測試,,一路傳給ARM HOST A8。

  本系統(tǒng)使用CCS編寫TI標準的代碼,,生成庫文件并加入到MCFW目錄中,,以供調(diào)用。本文的運動檢測算法庫文件運行在DSP上,,算法接口實現(xiàn)于alg_link中,。運動目標檢測事件的觸發(fā)是用基于sys/link的支持在異構(gòu)多核之間傳遞消息的組件。

2 結(jié)合中值濾波的ViBe運動目標檢測算法

  2.1 ViBe運動目標檢測算法

  ViBe(Visual Background extractor)是VAN D M[6]等人提出一種像素級的背景減除算法,。與傳統(tǒng)的GMM[7]等方法需要假設(shè)模型不同的是,,ViBe建立的是樣本模型,采用隨機更新策略,,計算量小,,對于光照的變化和抖動等其效果都十分穩(wěn)定。該算法過程主要包括:建立背景模型,、前景檢測和模型更新,。由于在第一幀中沒有包含像素的歷史信息,,在初始建模時容易因存在運動目標和噪聲而產(chǎn)生Ghost現(xiàn)象。

  針對上述提到的不足,,本文結(jié)合中值濾波提出了改進方法,。在初始化模型的過程中,利用前L幀選取中間的K個像素值作為初始背景模型,。實驗效果如圖3所示,利用中值濾波能在建立背景模型時有效避免Ghost區(qū)的出現(xiàn),,同時過濾其他隨機噪聲,。

003.jpg

  2.2 基于改進ViBe算法的實時運動檢測

  (1)建立背景建模,。利用中值濾波方法得到初始背景模型M0,;然后對于當(dāng)前的第t幀建立背景模型,如圖4所示:設(shè)x點處的像素值為p(x),,通過歷史t幀的選擇和更新結(jié)果建立其包含N個樣本的背景樣本集:

  M(x)={p1,,p2,…,,pN}(1)

004.jpg

 ?。?)前景檢測。SR(p(x))是以x為中心,、R為半徑的球體區(qū)域,,用球體SR(p(x))和背景模型M(x)的交集來衡量p(x)與M(x)的相似度:

  Sim(x)={SR(p(x)∩{p1,p2,,…,,pN})(2)

  若Sim(x)大于閾值Th,則待分類點p(x)與背景模型相似,,那么x點屬于背景點,,否則為前景。

 ?。?)背景模型更新,。采用隨機更新粗略:在新的一幀中,當(dāng)像素點p(x)被判斷為背景點時,,在N個樣本中選擇替換的樣本值時,,一個樣本值在時刻t被更新的概率只有1/N,那么在經(jīng)過時間dt后,,樣本值不被更新的概率是:

  @NZLO58LUI`RWFUHFCFYXWR.png

  式(3)表明,,當(dāng)前樣本值在背景模型中被替換的概率與當(dāng)前時間t無關(guān)。

 ?。?)輸出,。對每一幀設(shè)置一個前景點統(tǒng)計量F,當(dāng)F大于設(shè)定的閾值時就輸出當(dāng)前幀。

3 運動目標跟蹤

  本文在上述的檢測結(jié)果基礎(chǔ)上結(jié)合像素掃描標記方法進行實時的運動目標跟蹤,,使目標檢測系統(tǒng)能應(yīng)用于實際的車流量統(tǒng)計,、目標軌跡提取等方面。具體方法如下:

 ?。?)設(shè)當(dāng)前像素所屬的目標類為Cxy,;M為當(dāng)前矩形框的最小類別號;List={V1,,V2,,…}表示屬于同一個矩形框的類別號集合;set_List={L1,,L2,,...}表示所有List的集合。初始化所有像素和背景的類別號都為0,。

 ?。?)第一次掃描。將檢測得到的二值化圖像進行掃描,,檢查掃描框中像素的最小類別號,,對每個像素進行標記分類。分類方法如下:用V表示掃描過程中的所有分類標記的類別數(shù),。如果像素值為1,,則檢查該像素所在矩形框中所有像素的最小類別號M:

  當(dāng)M為0時,如圖5(a)所示,,將當(dāng)前像素標記為新的類別號V+1,,并將Cxy更新為V+1。

  最小M不為0時,,類似于圖5(b)所示的情況,,將當(dāng)前像素標記為M類,將Cxy更新為M,。

005.jpg

 ?。?)歸并。所有的List集合中至少有一個相同的類別號時,,歸并為新集合并標記新類別號,。此時,這些相同標記的點就是一個完整的目標所在區(qū)域,。

4 實驗與分析

  4.1 算法仿真實驗

  為了驗證算法的有效性,,首先在4 GB內(nèi)存、主頻3.2 GHz的PC平臺上進行仿真實驗,,并與參考文獻[7],、[8]幾種經(jīng)典的背景建模方法進行比較,,最終得到表1所示的仿真實驗結(jié)果。由表1可以看到,,在仿真實驗中改進的ViBe目標檢測算法的時間比幾種傳統(tǒng)的背景建模要更快速,。

007.jpg

  4.2 TI DM8168平臺上的實時運動目標檢測實驗

  基于TI DM8168 EVM平臺的實時運動目標檢測實驗,在移植過程中,,為了降低DSP的運算量,,本文將一些浮點運算改為定點計算,減少了循環(huán)中的復(fù)雜運算,。如圖6,、圖7所示,改進的ViBe算法能在嵌入式平臺中克服背景抖動,,實現(xiàn)實時魯棒的目標檢測;采用像素標記法能夠準確掃描并跟蹤目標,。

006.jpg

5 結(jié)論

  設(shè)計并實現(xiàn)了基于DM8168的實時視頻監(jiān)控系統(tǒng),,利用中值濾波方法解決了ViBe算法中容易出現(xiàn)Ghost的問題;然后結(jié)合像素標記方法對目標進行分類并實現(xiàn)跟蹤,;最后,,通過將該算法融合到TI的視頻監(jiān)控軟件框架中,實現(xiàn)了嵌入式平臺的實時運動目標檢測,。經(jīng)過對系統(tǒng)進一步優(yōu)化,,本文提出的方案還可以應(yīng)用于安防報警、數(shù)量統(tǒng)計等系統(tǒng)的應(yīng)用中,。

參考文獻

  [1] 蘇松志,,李紹滋,陳淑媛,,等.行人檢測技術(shù)綜述[J].電子學(xué)報,,2012,40(4):814-820.

  [2] 衛(wèi)保國,,曹慈卓.一種基于標記修正和樣本更新的目標跟蹤算法[J].計算機應(yīng)用研究,,2012,29(5):1963-1966.

  [3] 宋南,,趙晶.基于改進型像素標記算法的目標定位[J].現(xiàn)代電子技術(shù),,2012,35(5):52-54.

  [4] 胡小冉,,孫涵.一種新的基于ViBe的運動目標檢測方法[J].計算機科學(xué),,2014(2):149-152.

  [5] 朱海.基于DM8168的視頻監(jiān)控系統(tǒng)的實現(xiàn)[D].成都:電子科技大學(xué),2013.

  [6] VAN D M,, PAQUOT O. Background subtraction: experiments and improvements for ViBe[C]. 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),, IEEE,, 2012: 32-37.

  [7] 徐成,田崢,,李仁發(fā).一種基于改進碼本模型的快速運動檢測算法[J].計算機研究與發(fā)展,,2010,47(12):2149-2156.

  [8] 劉靜,,王玲.混合高斯模型背景法的一種改進算法[J].計算機工程與應(yīng)用,,2010,46(13):168-170.0

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。