《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計(jì)應(yīng)用 > 基于改進(jìn)中值濾波的手機(jī)玻璃瑕疵圖像增強(qiáng)方法
基于改進(jìn)中值濾波的手機(jī)玻璃瑕疵圖像增強(qiáng)方法
2022年電子技術(shù)應(yīng)用第7期
鞏玉奇1,2,,陶晉宜1,,楊 剛2
1.太原理工大學(xué) 電氣與動(dòng)力工程學(xué)院,,山西 太原030024; 2.西安電子科技大學(xué) 超高速電路設(shè)計(jì)與電磁兼容教育部重點(diǎn)實(shí)驗(yàn)室,,陜西 西安710071
摘要: 手機(jī)蓋板玻璃瑕疵檢測(cè)主要分為圖像獲取,、圖像預(yù)處理、圖像分割和瑕疵分類這幾個(gè)步驟,。由于高質(zhì)量圖像獲取難度大,,接下來的圖像預(yù)處理就會(huì)顯得尤其重要。傳統(tǒng)的濾波方法在處理圖像噪聲時(shí),,都或多或少對(duì)圖片產(chǎn)生一定的模糊,,損失部分有效信息,通常噪聲的存在會(huì)使得附近鄰域內(nèi)的極值上下差距較大,,所以濾波變成不可或缺的步驟,。改進(jìn)傳統(tǒng)的中值濾波,通過判斷目標(biāo)像素點(diǎn)是否需要進(jìn)行濾波處理的辦法,,增強(qiáng)圖像的同時(shí),,使得有用瑕疵信息的損失降低。在濾波處理后用直方圖均衡化對(duì)圖像進(jìn)一步處理,,起到圖像增強(qiáng)的效果,。相比于傳統(tǒng)的中值濾波,該方法不僅會(huì)保留瑕疵邊緣信息,,同時(shí)圖像增強(qiáng)后的效果也更好,。
中圖分類號(hào): TP391
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.211938
中文引用格式: 鞏玉奇,陶晉宜,,楊剛. 基于改進(jìn)中值濾波的手機(jī)玻璃瑕疵圖像增強(qiáng)方法[J].電子技術(shù)應(yīng)用,,2022,,48(7):91-95.
英文引用格式: Gong Yuqi,Tao Jinyi,,Yang Gang. Mobile phone glass defect image enhancement method based on improved median filter[J]. Application of Electronic Technique,,2022,48(7):91-95.
Mobile phone glass defect image enhancement method based on improved median filter
Gong Yuqi1,,2,,Tao Jinyi1,Yang Gang2
1.Institute of Electrical and Power Engineering,,Taiyuan University of Technology,,Taiyuan 030024,China,; 2.Key Lab of High-Speed Circuit Design and EMC.Ministry of Education,,Xidian University,Xi′an 710071,,China
Abstract: The defect detection of mobile phone cover glass is mainly divided into several steps: image acquisition, image preprocessing, image segmentation and defect classification. Due to the difficulty of obtaining high-quality images, the subsequent image preprocessing will be particularly important. Traditional filtering methods, when dealing with image noise, more or less blur the picture and lose part of the effective information. Usually the presence of noise will make the extreme value in the nearby neighborhood have a large gap between the upper and lower extremes, so filtering becomes an indispensable step. This paper improves the traditional median filter,,by judging whether the target pixel needs to be filtered, while enhancing the image, it reduces the loss of useful defect information. This article uses histogram equalization to further process the image after the filtering process, which has the effect of image enhancement. Compared with the traditional median filtering, this method not only preserves the edge information of the flaws, but also has better image enhancement effects.
Key words : glass defects;image enhancement,;median filtering,;histogram equalization;PSNR

0 引言

    濾波去噪以及圖像增強(qiáng)作為玻璃瑕疵缺陷分割以及瑕疵分類的前序步驟,,其處理效果直接影響瑕疵的分割以及分類[1-2],。邊緣檢測(cè)主要是依據(jù)圖像像素強(qiáng)度的變化來篩選出可能存在的邊緣的像素點(diǎn)[3],其數(shù)學(xué)模型實(shí)際上是通過計(jì)算像素點(diǎn)亮度的一階導(dǎo)數(shù)或者二階導(dǎo)數(shù)來確定,。但是玻璃瑕疵的多樣性造成的瑕疵圖像的獲取難度相當(dāng)之高,,不同的瑕疵需要不同的打光角度[4],也需要不同的相機(jī)架設(shè)角度[5],,而同一張玻璃上面會(huì)同時(shí)存在不同的瑕疵,,本文的玻璃瑕疵圖像獲取必須是具有一定的泛化能力的,基于瑕疵圖像獲取的不精確性,,才更加凸顯出圖像處理的關(guān)鍵之處,。

    常用的濾波方法包括時(shí)域?yàn)V波和頻域的濾波,目前主要有以下幾種:均值濾波,、方框?yàn)V波,、雙邊濾波、高斯濾波以及中值濾波等,。針對(duì)目前實(shí)驗(yàn)所拍攝的玻璃瑕疵圖像的噪聲,,中值濾波能夠比較有效地去除圖像的噪點(diǎn)影響[6],但是中值濾波對(duì)于圖像的有用的邊緣信息也會(huì)進(jìn)行處理,這樣就會(huì)影響處理后的圖片清晰度,,雖然噪聲會(huì)有效去除,,但是其清晰度的降低和邊緣信息的損失會(huì)給后期的圖像增強(qiáng)和分割造成困擾。因此,,本文在玻璃瑕疵圖像濾波去噪的環(huán)節(jié)采用一種帶有條件判斷的中值濾波方式,,結(jié)合直方圖均衡化,有效做到圖像處理和增強(qiáng)效果[7],。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://forexkbc.com/resource/share/2000004594,。




作者信息:

鞏玉奇1,2,,陶晉宜1,,楊  剛2

(1.太原理工大學(xué) 電氣與動(dòng)力工程學(xué)院,山西 太原030024,;

2.西安電子科技大學(xué) 超高速電路設(shè)計(jì)與電磁兼容教育部重點(diǎn)實(shí)驗(yàn)室,,陜西 西安710071)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載,。