文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.2016.01.013
中文引用格式: 王晨輝,,吳悅,,楊凱. 基于STM32的多通道數(shù)據(jù)采集系統(tǒng)設(shè)計(jì)[J].電子技術(shù)應(yīng)用,,2016,42(1):51-53,,57.
英文引用格式: Wang Chenhui,,Wu Yue,Yang Kai. Design of multi-channel data acquisition system based on STM32[J].Application of Electronic Technique,,2016,,42(1):51-53,57.
0 引言
在地質(zhì)災(zāi)害監(jiān)測中,需要監(jiān)測泥位,、地聲,、次聲、位移等多種監(jiān)測數(shù)據(jù),,數(shù)據(jù)采集系統(tǒng)被廣泛應(yīng)用,,監(jiān)測人員關(guān)注的不再是采集系統(tǒng)的功能,而是其基本性能,,如采集速度,、采集精度、抗干擾能力[1],。而且,,以往人工到現(xiàn)場定時(shí)采集數(shù)據(jù)的監(jiān)測方法已不能滿足當(dāng)前地質(zhì)災(zāi)害監(jiān)測技術(shù)要求,本文利用ARM微控制器STM32F103和低噪聲雙通道模數(shù)轉(zhuǎn)換芯片ADS1256共同構(gòu)建低功耗多通道數(shù)據(jù)采集系統(tǒng),,實(shí)現(xiàn)多通道數(shù)據(jù)不間斷實(shí)時(shí)采集,,通過串口與GPRS模塊或北斗衛(wèi)星模塊實(shí)現(xiàn)監(jiān)測數(shù)據(jù)的遠(yuǎn)程無線傳輸,有效提高監(jiān)測參數(shù)精度,,提升系統(tǒng)穩(wěn)定性與可靠性,,降低系統(tǒng)功耗。
1 系統(tǒng)總體設(shè)計(jì)
多通道數(shù)據(jù)采集系統(tǒng)主要由ARM微控制器STM32F103,、A/D轉(zhuǎn)換電路,、電源電路、數(shù)據(jù)存儲(chǔ)電路,、數(shù)據(jù)傳輸電路和數(shù)據(jù)監(jiān)控中心組成[2],。STM32F103作為多通道數(shù)據(jù)采集系統(tǒng)的核心,,控制協(xié)調(diào)具體的數(shù)據(jù)采集、存儲(chǔ)與傳輸,。A/D轉(zhuǎn)換電路可采集泥位,、地聲、次聲,、位移等現(xiàn)場數(shù)據(jù),,STM32F103將采集的現(xiàn)場數(shù)據(jù)簡單分析處理后通過數(shù)據(jù)傳輸電路傳輸?shù)竭h(yuǎn)程數(shù)據(jù)監(jiān)控中心,數(shù)據(jù)傳輸主要通過GPRS或北斗衛(wèi)星模塊上傳,,后臺(tái)數(shù)據(jù)監(jiān)控中心可實(shí)現(xiàn)對現(xiàn)場數(shù)據(jù)的實(shí)時(shí)在線查看及歷史查詢,,數(shù)據(jù)存儲(chǔ)電路可將采集數(shù)據(jù)實(shí)時(shí)保存到SD卡中,方便以后數(shù)據(jù)處理,。系統(tǒng)總體結(jié)構(gòu)框圖如圖1所示,。
2 系統(tǒng)硬件電路設(shè)計(jì)
2.1 微控制器簡介
微控制器采用STM32系列的32位微控制器STM32F103R8。它采用ARM32位Cortex TM-M3的CPU,,主頻可達(dá)72 MHz,,內(nèi)置高達(dá)512 KB的閃存和64 KB的SRAM,具備豐富的外設(shè)資源,,主要包括ADC,、RTC、I2C及SPI等接口,??商峁┧摺⑼C(jī)和待機(jī)三種省電模式,,有效保證系統(tǒng)的低功耗性,,而且Thumb-2指令集可有效提高系統(tǒng)運(yùn)行的效率與實(shí)時(shí)性。
2.2 A/D轉(zhuǎn)換電路
A/D轉(zhuǎn)換電路選用TI公司推出的針對工業(yè)應(yīng)用的模數(shù)轉(zhuǎn)換器ADS1256,,其24位Δ-ΣADC適用于科學(xué)儀器,、工藝控制等工業(yè)應(yīng)用領(lǐng)域,提供了最高23位的無噪聲精度,、最高30 kS/s的數(shù)據(jù)速率,、±0.001 0% 非線性特性,非常適合用于高速,、高精度數(shù)據(jù)采集,,其內(nèi)部集成有輸入多路復(fù)用器、輸入緩沖器,、可編程增益放大器[3],。
2.3 電源電路
電源電路采用太陽能浮充鋰電池作為供電電源,鋰電池組基本參數(shù)為12 V/16 Ah,通過電源轉(zhuǎn)換為系統(tǒng)提供12 V,、5 V及3.3 V三路工作電源,,微控制器通過程序管理協(xié)調(diào)實(shí)現(xiàn)各部分電源供給,實(shí)現(xiàn)系統(tǒng)的低功耗,。5 V電源由TPS54229E轉(zhuǎn)化提供,支持寬電壓輸入,,集成高效率FET,,電路PCB空間較小,適合多通道數(shù)據(jù)采集系統(tǒng)的多電源總線調(diào)節(jié)設(shè)計(jì)[4],,3.3 V電源采用功耗非常低的降壓模塊LTC3631轉(zhuǎn)化提供,。
2.4 數(shù)據(jù)存儲(chǔ)電路
數(shù)據(jù)存儲(chǔ)電路主要由內(nèi)部Flash和外部MicroSD卡兩部分組成[5]。內(nèi)部Flash用于系統(tǒng)內(nèi)部傳感器的數(shù)據(jù)存儲(chǔ),,MicroSD卡用于采集野外現(xiàn)場監(jiān)測傳感器的數(shù)據(jù)存儲(chǔ),。微控制器STM32F103采用SDIO模式驅(qū)動(dòng)MicroSD卡工作,微控制器控制CLK作為MicroSD卡的時(shí)鐘信號線,,在每個(gè)時(shí)鐘內(nèi)可傳輸一位命令或數(shù)據(jù),;CMD是命令信號線,用于傳輸微控制器發(fā)出的命令或命令響應(yīng),;監(jiān)測數(shù)據(jù)通過DATA0~DATA3四根數(shù)據(jù)線進(jìn)行傳輸,。此外,系統(tǒng)擴(kuò)展EEPROM存儲(chǔ)器,,采用Microchip公司的24LC512,,用于存儲(chǔ)系統(tǒng)的ID、采集時(shí)間,、采集頻率,、工作模式、數(shù)據(jù)傳輸目標(biāo)地址等相關(guān)參數(shù),,EEPROM內(nèi)部存儲(chǔ)的信息為系統(tǒng)的定時(shí)與實(shí)時(shí)在線兩種工作模式提供標(biāo)準(zhǔn)參考,。
2.5 數(shù)據(jù)傳輸電路
數(shù)據(jù)傳輸電路分為GPRS和北斗衛(wèi)星傳輸,系統(tǒng)通過RS232串口分別與GPRS和北斗衛(wèi)星傳輸模塊連接,。GPRS傳輸作為常規(guī)的傳輸模式,,傳輸模式簡單、可靠,、穩(wěn)定,,在數(shù)據(jù)傳輸時(shí)優(yōu)先選擇,無法滿足GPRS信號時(shí)選擇北斗衛(wèi)星傳輸模式,。GPRS傳輸模塊選用華為GTM900C模塊,,通過GPRS網(wǎng)絡(luò)以TCP/IP數(shù)據(jù)包方式將現(xiàn)場監(jiān)測數(shù)據(jù)實(shí)時(shí)傳輸?shù)竭h(yuǎn)程監(jiān)控中心。北斗衛(wèi)星傳輸模塊選用國智恒集團(tuán)的BGT-500模塊,,可實(shí)現(xiàn)RDSS的雙向定位和短報(bào)文通信功能,,具有較高的集成度和更低的功耗,,系統(tǒng)通過北斗通信模塊以短報(bào)文方式將監(jiān)測數(shù)據(jù)傳輸?shù)竭h(yuǎn)程監(jiān)控中心。
3 系統(tǒng)軟件設(shè)計(jì)
系統(tǒng)軟件設(shè)計(jì)主要包括微控制器軟件設(shè)計(jì),、數(shù)據(jù)采集軟件設(shè)計(jì),、數(shù)據(jù)存儲(chǔ)軟件設(shè)計(jì)、數(shù)據(jù)傳輸軟件設(shè)計(jì)及數(shù)據(jù)監(jiān)控中心軟件設(shè)計(jì),。
3.1 微控制器軟件設(shè)計(jì)
在微控制器的協(xié)調(diào)下完成現(xiàn)場數(shù)據(jù)采集,、存儲(chǔ)與傳輸。微控制器軟件設(shè)計(jì)主要涉及系統(tǒng)工作狀態(tài)初始化,、A/D轉(zhuǎn)換初始化,、SDIO和MicroSD卡初始化及串口初始化。初始化完成后,,微控制器進(jìn)入到低功耗工作模式,,相關(guān)數(shù)據(jù)采集通道自動(dòng)進(jìn)行相應(yīng)的數(shù)據(jù)采集模式,當(dāng)各個(gè)通道采集到數(shù)據(jù)后會(huì)發(fā)出采集完成中斷來喚醒微控制器,,中斷子程序流程圖如圖2所示[6],。
3.2 A/D轉(zhuǎn)換軟件設(shè)計(jì)
數(shù)據(jù)采集程序由微控制器與ADS1256共同完成,數(shù)據(jù)采集包括A/D數(shù)據(jù)和數(shù)字量數(shù)據(jù)采集,,A/D數(shù)據(jù)采集包括被測現(xiàn)場信號的帶寬,、被測信號精度、采集功耗,,A/D數(shù)據(jù)采集在設(shè)置時(shí)要將ADS1256設(shè)置為可調(diào)模式,,數(shù)據(jù)的輸出在模式選擇后與芯片時(shí)鐘頻率CLK有關(guān),數(shù)據(jù)采集通過SPI通信協(xié)議,,數(shù)據(jù)轉(zhuǎn)換后用TDM模式輸出,,軟件流程圖如圖3所示。
3.3 數(shù)據(jù)存儲(chǔ)軟件設(shè)計(jì)
微控制器通過SDIO模式完成現(xiàn)場數(shù)據(jù)的存儲(chǔ),,主要包括MicroSD卡的初始化,、卡識(shí)別、采集數(shù)據(jù)的讀寫[7],。上電初始化后,,微控制器通過庫函數(shù)SDIO_Init()配置SD卡時(shí)鐘,發(fā)送命令檢測是否有SD卡存在并對接入系統(tǒng)的卡進(jìn)行歸類,,同時(shí)對操作電壓進(jìn)行范圍驗(yàn)證以保證CID和CSD數(shù)據(jù)能正常讀寫,;STM32F103以時(shí)鐘頻率開始MicroSD卡的識(shí)別流程,發(fā)送ALL_SEND_CID獲取MicroSD的CID(unique card identification),,發(fā)送SEND_RELATIVE_ADDR獲取RCA(Relative Card Address),,RCA用于對MicroSD進(jìn)行尋址,一旦RCA被接收,代表卡已進(jìn)入待機(jī)狀態(tài),;接下來STM32F103發(fā)送SEND_CSD來獲取卡的CSD(Card Specific Data)寄存器內(nèi)容,,包括塊長度、卡存儲(chǔ)容量,、最大時(shí)鐘速率等,;然后進(jìn)入讀寫狀態(tài),通過調(diào)用SD_ReadDisk()函數(shù)與SD_WriteDisk()函數(shù)實(shí)現(xiàn)微控制器與MicroSD卡之間的數(shù)據(jù)讀寫操作,。
3.4 數(shù)據(jù)傳輸軟件設(shè)計(jì)
微控制器啟動(dòng)數(shù)據(jù)傳輸程序后,,對系統(tǒng)進(jìn)行工作方式初始化,通過EEPROM讀取相關(guān)通信配置,,比如設(shè)定服務(wù)器IP地址、端口號,、設(shè)備號,、工作時(shí)間等;然后由微處理器發(fā)出指令檢測現(xiàn)場傳輸信號,,首先查詢GPRS模塊網(wǎng)絡(luò)是否注冊成功,;成功后即可建立與數(shù)據(jù)監(jiān)控中心服務(wù)器的連接,并進(jìn)行數(shù)據(jù)傳輸處理,;根據(jù)需要發(fā)送一定格式的心跳信息,。一旦發(fā)現(xiàn)現(xiàn)場無GPRS網(wǎng)絡(luò)信號自動(dòng)切換到北斗衛(wèi)星傳輸模式,現(xiàn)場北斗傳輸模塊上電后微處理器向北斗發(fā)送IC卡檢測命令,,回復(fù)正確后向數(shù)據(jù)監(jiān)控中心發(fā)送通信申請,,收到命令后才發(fā)送現(xiàn)場數(shù)據(jù)。數(shù)據(jù)傳輸軟件流程圖如圖4所示,。
3.5 數(shù)據(jù)監(jiān)控中心程序流程圖
數(shù)據(jù)監(jiān)控中心(服務(wù)器)軟件作為TCP服務(wù)器端和北斗服務(wù)器端,,具有公網(wǎng)固定IP地址且開放監(jiān)聽端口,分別接收來自GPRS客戶端的TCP數(shù)據(jù)包與北斗客戶端的數(shù)據(jù),,并向客戶端發(fā)送應(yīng)答數(shù)據(jù),。主要任務(wù)是完成對通信數(shù)據(jù)的接收、分析,、處理和存儲(chǔ),。首先服務(wù)器端啟動(dòng)TCP/IP監(jiān)聽和打開串口,監(jiān)聽TCP端口和串口,,將接收到數(shù)據(jù)包/數(shù)據(jù)進(jìn)行分析,、處理,然后將數(shù)據(jù)存儲(chǔ)到數(shù)據(jù)庫中,,便于以后數(shù)據(jù)查詢與分析[8],。數(shù)據(jù)監(jiān)控中心程序流程圖如圖5所示。
4 系統(tǒng)測試與分析
為驗(yàn)證測試多通道數(shù)據(jù)采集系統(tǒng)的性能功能,搭建野外模擬數(shù)據(jù)測試平臺(tái),,給4個(gè)數(shù)據(jù)采集通道輸入模擬野外監(jiān)測傳感器的電壓信號,,將系統(tǒng)采集到的數(shù)據(jù)與采集通道的輸入電壓進(jìn)行對比分析,測試結(jié)果如表1所示,。
從兩組測試結(jié)果可以看出,,系統(tǒng)4個(gè)采集通道均可準(zhǔn)確對輸入電壓進(jìn)行數(shù)據(jù)采樣,采集數(shù)據(jù)可以精確到小數(shù)點(diǎn)后3位,,系統(tǒng)采樣結(jié)果相對誤差較小,,完全滿足對野外監(jiān)測數(shù)據(jù)的精度要求。
5 結(jié)語
本文以嵌入式微處理器STM32F103與ADS1256共同構(gòu)建多通道數(shù)據(jù)采集系統(tǒng),,充分發(fā)揮STM32F103的控制協(xié)調(diào)作用,,可實(shí)時(shí)在線采集0~5 V電壓輸出型的不同傳感器信號,有效保證數(shù)據(jù)采集精度,、實(shí)時(shí)性及數(shù)據(jù)處理能力,,并實(shí)現(xiàn)遠(yuǎn)程數(shù)據(jù)傳輸,遠(yuǎn)程數(shù)據(jù)監(jiān)控中心與地質(zhì)災(zāi)害現(xiàn)場可進(jìn)行實(shí)時(shí)在線通信,,對現(xiàn)場數(shù)據(jù)可進(jìn)行實(shí)時(shí)查詢,、分析及數(shù)據(jù)處理。軟硬件架構(gòu)的合理設(shè)計(jì)有效降低了系統(tǒng)的成本與功耗,,實(shí)現(xiàn)系統(tǒng)的微型化與智能化采集,,可廣泛應(yīng)用于地質(zhì)災(zāi)害野外現(xiàn)場數(shù)據(jù)采集,在地質(zhì)災(zāi)害監(jiān)測中有較好的應(yīng)用前景,。
參考文獻(xiàn)
[1] 徐航,,羅巍.基于嵌入式的多通道高速數(shù)據(jù)采集系統(tǒng)[J].自動(dòng)化與儀器儀表,,2013(1):148-150.
[2] 楊振江.智能儀器與數(shù)據(jù)采集系統(tǒng)中的新器件及應(yīng)用[M].西安:西安電子科技大學(xué)出版社,,2001:95-163.
[3] 陳紅遠(yuǎn),郭天太,,吳俊杰,,等.多通道微弱電壓信號同步采集系統(tǒng)開發(fā)[J].電子技術(shù)應(yīng)用,2014(40):79-84.
[4] 鐘文濤,,劉強(qiáng).基于單片機(jī)的野外信息檢測記錄系統(tǒng)[J].機(jī)電工程技術(shù),,2013,42(5):26-30.
[5] 胡祥超,,李艷潔,,趙新華,等.便攜式野外傳感器原位數(shù)據(jù)采集系統(tǒng)設(shè)計(jì)[J].傳感器與微系統(tǒng),,2014,,33(10):69-72.
[6] 丁凡,,周永明.基于ZigBee的多路溫度數(shù)據(jù)無線采集系統(tǒng)設(shè)計(jì)[J].儀表技術(shù)與傳感器,2013(8):72-78.
[7] 潘玲嬌,,張自嘉,,樊延虎,等.嵌入式16通道同步數(shù)據(jù)采集系統(tǒng)設(shè)計(jì)[J].儀表技術(shù)與傳感器,,2013(11):91-94.
[8] 馬軍,,李志華.基于STM32的無線次聲采集系統(tǒng)的設(shè)計(jì)[J].電子技術(shù)應(yīng)用,2014,,40(4):92-95.