《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 基于基擴(kuò)展模型的高移動(dòng)性信道估計(jì)方法
基于基擴(kuò)展模型的高移動(dòng)性信道估計(jì)方法
2017年電子技術(shù)應(yīng)用第6期
黃錦錦,,趙宜升,陳忠輝,,賴鑫琳,,董志翔
福州大學(xué) 物理與信息工程學(xué)院,福建 福州350108
摘要: 針對(duì)鐵路長(zhǎng)期演進(jìn)(LTE-R)通信系統(tǒng),,開展高移動(dòng)性信道估計(jì)研究,。通過引入基擴(kuò)展模型,將LTE-R系統(tǒng)的信道沖激響應(yīng)擬合為若干基函數(shù)與系數(shù)乘積和的形式,。通過對(duì)基函數(shù)系數(shù)的估計(jì),,實(shí)現(xiàn)對(duì)快速時(shí)變信道進(jìn)行近似。通過仿真對(duì)多項(xiàng)式基擴(kuò)展模型,、復(fù)指數(shù)基擴(kuò)展模型,、泛化復(fù)指數(shù)基擴(kuò)展模型和優(yōu)化泛化復(fù)指數(shù)基擴(kuò)展模型進(jìn)行性能對(duì)比。仿真結(jié)果表明,,優(yōu)化泛化復(fù)指數(shù)基擴(kuò)展模型具有最低的歸一化均方誤差,。此外,對(duì)于優(yōu)化泛化復(fù)指數(shù)基擴(kuò)展模型,,分別探討了不同移動(dòng)速度,、不同基函數(shù)個(gè)數(shù)和不同調(diào)制方式下的估計(jì)性能,。仿真結(jié)果顯示,在較高移動(dòng)速度,、較少基函數(shù)個(gè)數(shù)及較高階調(diào)制方式下,,優(yōu)化泛化復(fù)指數(shù)基擴(kuò)展模型仍然具有較低的歸一化均方誤差。
中圖分類號(hào): TN914
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.2017.06.029
中文引用格式: 黃錦錦,,趙宜升,,陳忠輝,等. 基于基擴(kuò)展模型的高移動(dòng)性信道估計(jì)方法[J].電子技術(shù)應(yīng)用,,2017,,43(6):113-117.
英文引用格式: Huang Jinjin,Zhao Yisheng,,Chen Zhonghui,,et al. High mobility channel estimation method based on basis expansion model[J].Application of Electronic Technique,2017,,43(6):113-117.
High mobility channel estimation method based on basis expansion model
Huang Jinjin,,Zhao Yisheng,Chen Zhonghui,,Lai Xinlin,,Dong Zhixiang
College of Physics and Information Engineering,F(xiàn)uzhou University,,F(xiàn)uzhou 350108,,China
Abstract: In this paper, the problem of high mobility channel estimation is investigated in the Long-Term Evolution for Railway(LTE-R) communication system. By employing a Basis Expansion Model(BEM), the channel impulse response of the LTE-R system is fitted as the summation of several basis functions multiplied by the corresponding coefficients. The fast time-varying channel can be obtained approximately by estimating the coefficients of the basis functions. The performances of a polynomial BEM, a Complex Exponential BEM(CE-BEM), a Generalized CE-BEM(GCE-BEM), and an Optimization GCE-BEM(OGCE-BEM) are compared by simulation. Simulation results show that the OGCE-BEM has the lowest Normalized Mean Square Error(NMSE). In addition, the estimation performances of the OGCE-BEM are discussed under different moving speeds, different numbers of basis functions, and different modulation modes, respectively. Simulation results reveal that the OGCE-BEM still has a lower NMSE under a higher moving speed, a smaller number of basis functions, and a higher order modulation.
Key words : channel estimation,;high mobility,;basis expansion model

0 引言

    鐵路長(zhǎng)期演進(jìn)(Long -Term Evolution for Railway,LTE-R)系統(tǒng)是極具前景的高速鐵路通信系統(tǒng),。根據(jù)國(guó)際鐵路聯(lián)盟的規(guī)劃,,鐵路移動(dòng)通信系統(tǒng)將從傳統(tǒng)的鐵路全球移動(dòng)通信系統(tǒng)(Global System for Mobile Communications-Railway,GSM-R)直接過渡到LTE-R系統(tǒng)[1],。對(duì)于LTE-R系統(tǒng),,列車移動(dòng)速度通常超過300 km/h,會(huì)產(chǎn)生嚴(yán)重的多普勒頻移,。同時(shí),,無線信道狀態(tài)呈現(xiàn)動(dòng)態(tài)變化特點(diǎn)。如何保證在高移動(dòng)性場(chǎng)景下,,仍然能夠?yàn)橛脩籼峁┛煽康臒o線通信服務(wù),,信道估計(jì)是關(guān)鍵。

    信道估計(jì)問題已經(jīng)引起了廣泛關(guān)注,。根據(jù)是否需要引入導(dǎo)頻信息,,信道估計(jì)可以分為盲信道估計(jì),、導(dǎo)頻輔助信道估計(jì)和半盲信道估計(jì)。然而,,盲信道估計(jì)[2-3]雖然省去了導(dǎo)頻信息的傳遞,,提高了頻帶利用率,但其算法收斂速度較慢,,且需要大量的數(shù)據(jù)存儲(chǔ)和復(fù)雜的數(shù)學(xué)運(yùn)算,,因此局限應(yīng)用于慢時(shí)變衰落信道,對(duì)數(shù)據(jù)實(shí)時(shí)處理要求不高的地方,,不適用于高移動(dòng)性信道估計(jì),;導(dǎo)頻輔助信道估計(jì)[4-5]具有較低的算法復(fù)雜度,便于系統(tǒng)的實(shí)現(xiàn),,且能實(shí)時(shí)跟蹤C(jī)SI,,適合進(jìn)行快速時(shí)變信道估計(jì);半盲信道估計(jì)算法[6-7]雖然在復(fù)雜度和導(dǎo)頻數(shù)量上進(jìn)行了折衷,,但復(fù)雜度仍然較高,,也不適合對(duì)快速動(dòng)態(tài)變化信道進(jìn)行估計(jì)?;?a class="innerlink" href="http://forexkbc.com/tags/基擴(kuò)展模型" title="基擴(kuò)展模型" target="_blank">基擴(kuò)展模型(Basis Expansion Model,,BEM)的導(dǎo)頻輔助信道估計(jì)方法[8-9]通過若干基函數(shù)與系數(shù)乘積和的方式,可以對(duì)快速時(shí)變信道進(jìn)行近似,,已經(jīng)引起了廣泛關(guān)注,。因此,本文將采用BEM對(duì)高移動(dòng)性信道估計(jì)問題進(jìn)行研究,。

    本文針對(duì)LTE-R通信系統(tǒng),,開展高移動(dòng)性場(chǎng)景的信道估計(jì)研究。首先,,建立LTE-R系統(tǒng)的信道模型,。然后,根據(jù)BEM將LTE-R信道沖激響應(yīng)表示為若干基函數(shù)與系數(shù)乘積和的形式,。接下來,,通過對(duì)基函數(shù)系數(shù)進(jìn)行估計(jì)的方式,實(shí)現(xiàn)對(duì)LTE-R信道的擬合,。最后,,通過仿真對(duì)4種形式的BEM進(jìn)行性能評(píng)估。

1 LTE-R信道模型

    高速鐵路LTE-R通信系統(tǒng)結(jié)構(gòu)如圖1所示,。設(shè)計(jì)分布式基站可以解決高速列車通信問題,,分布式基站由室內(nèi)基帶處理單元(Building Baseband Unit,BBU)和射頻拉遠(yuǎn)單元(Radio Remote Unit,RRU)組成[10],。BBU位于基站的室內(nèi),,RRU被部署在鐵路沿線附近,多個(gè)RRU分別通過光纖將信號(hào)傳輸?shù)紹BU,。分布式基站的設(shè)計(jì)可以擴(kuò)大小區(qū)信號(hào)的覆蓋范圍,,在一定程度上可以減少用戶越區(qū)切換次數(shù)。BBU和RRU分別用于處理基帶信號(hào)和射頻信號(hào),,由于通過光纖將基帶信號(hào)從BBU傳輸?shù)絉RU,,從而避免了射頻信號(hào)的長(zhǎng)距離傳輸,可以顯著降低傳輸損耗,。此外,,由于無線信號(hào)穿過列車車廂會(huì)造成嚴(yán)重的穿透損耗,為了保證RRU和列車之間的可靠通信,,在列車的頂部安裝一個(gè)車載臺(tái)(Vehicular Station,,VS)。VS通過無線方式與RRU建立連接,。同時(shí),,在每節(jié)車廂里都安裝一個(gè)中繼器(Repeater,R),,中繼器通過有線方式與VS建立連接,。車廂里的不同用戶設(shè)備(User Equipments,UE)可以通過中繼器連接到網(wǎng)絡(luò),。

tx6-t1.gif

    對(duì)于高速鐵路LTE-R通信系統(tǒng),,由于RRU部署在鐵路沿線附近,同時(shí)鐵路沿線存在特殊的地理環(huán)境特征,,使得RRU和VS之間除了存在一條直接的視距(Line-of-Sight,,LOS)路徑以外,還存在若干條間接的非視距(Non-Line-of-Sight,,NLOS)路徑,。受文獻(xiàn)[11],、[12]啟發(fā),,將信道沖激響應(yīng)表示為:

tx6-gs1-3.gif

式中,σ是非視距信號(hào)歸一化平均功率的標(biāo)準(zhǔn)偏差,,A為視距信號(hào)的平均幅度,。

2 基于基擴(kuò)展模型的信道估計(jì)方法

2.1 基擴(kuò)展模型信道建模

    采用BEM進(jìn)行信道建模的基本原理是通過若干基函數(shù)與系數(shù)乘積和來擬合無線信道。假設(shè)信號(hào)傳播的多徑數(shù)量為L(zhǎng),,對(duì)于第l條路徑,,若N點(diǎn)采樣的信道增益向量為hl,同時(shí)基函數(shù)向量為bm,,那么,,通過基擴(kuò)展模型擬合信道增益hl可以表示為:

tx6-gs4-6.gif

    此外,,根據(jù)基函數(shù)形式的不同,基擴(kuò)展模型可以分為多項(xiàng)式基擴(kuò)展模型(Polynomial BEM,,P-BEM),、復(fù)指數(shù)基擴(kuò)展模型(Complex Exponential BEM,CE-BEM),、泛化復(fù)指數(shù)基擴(kuò)展模型(Generalized CE-BEM,,GCE-BEM)和優(yōu)化泛化復(fù)指數(shù)基擴(kuò)展模(OptimizationGCE-BEM,OGCE-BEM),,分別介紹如下:

    對(duì)于P-BEM是以泰勒級(jí)數(shù)為基礎(chǔ)的,,其第m個(gè)基函數(shù)第n個(gè)元素可以表示為[13]

    tx6-gs7.gif

式中,0≤n≤N-1,,0≤m≤M-1,。 

    對(duì)于CE-BEM,是以傅里葉級(jí)數(shù)理論為基礎(chǔ)的,,其第m個(gè)基函數(shù)第n個(gè)元素可以表示為[14]

tx6-gs8-9.gif

    對(duì)于OGCE-BEM,,其第m個(gè)基函數(shù)第n個(gè)元素可以表示為[16]

tx6-gs10.gif

2.2 基函數(shù)系數(shù)估計(jì)

    時(shí)變多徑信道的輸入輸出響應(yīng)關(guān)系式有:

tx6-gs11-17.gif

式中,H為N×N維時(shí)域信道循環(huán)矩陣,,且表達(dá)式為:

tx6-gs18.gif

    所以,,頻域Y表示為:

     tx6-gs19-20.gif

3 仿真結(jié)果和分析

tx6-gs21.gif

    圖2對(duì)比了不同BEM的NMSE性能。在仿真中,,移動(dòng)速度是v=350 km/h,,調(diào)制方式為64QAM,基函數(shù)個(gè)數(shù)為11,??梢钥吹剑珿CE-BEM的性能優(yōu)于CE-BEM,,原因是GCE-BEM對(duì)多普勒頻譜更加密集的采樣能有效減少CE-BEM的頻譜泄露問題,。同時(shí),OGCE-BEM的估計(jì)性能優(yōu)于GCE-BEM,,這是因?yàn)镺GCE-BEM通過對(duì)GCE-BEM基函數(shù)頻率的修正,,減少了高頻基函數(shù)對(duì)模型帶來的誤差,使信道估計(jì)性能達(dá)到最優(yōu),,彌補(bǔ)了GCE-BEM在高頻點(diǎn)的估計(jì)誤差偏大問題,。另外,P-BEM估計(jì)性能最差,,說明依據(jù)泰勒級(jí)數(shù)理論基礎(chǔ)的多項(xiàng)式線性組合的基函數(shù)模型對(duì)于LTE-R系統(tǒng)信道擬合誤差偏大,。

tx6-t2.gif

    圖3對(duì)比了不同移動(dòng)速度時(shí)OGCE-BEM的NMSE性能。在仿真中,調(diào)制方式為64QAM,,基函數(shù)個(gè)數(shù)為11,。當(dāng)移動(dòng)速度為v=350 km/h,噪聲功率為0 dBm時(shí),,OGCE-BEM的NMSE達(dá)到10-5,,說明即使在高階調(diào)制情況下,采用OGCE-BEM進(jìn)行高移動(dòng)性信道估計(jì),,也能夠獲得較小的NMSE,。

tx6-t3.gif

    圖4對(duì)比了不同基函數(shù)個(gè)數(shù)時(shí)OGCE-BEM的NMSE性能。在仿真中,,移動(dòng)速度是v=350 km/h,,調(diào)制方式為64QAM。當(dāng)基函數(shù)個(gè)數(shù)為3,、噪聲功率為10 dBm時(shí),,OGCE-BEM的NMSE仍然能夠達(dá)到10-4。當(dāng)基函數(shù)個(gè)數(shù)為15,、噪聲功率為10 dBm時(shí),,OGCE-BEM的NMSE能夠達(dá)到10-5。通過增加一定的基函數(shù)個(gè)數(shù),,可以使信道估計(jì)的NMSE性能提高,。

tx6-t4.gif

    圖5對(duì)比了不同調(diào)制方式時(shí)OGCE-BEM的NMSE性能。在仿真中,,移動(dòng)速度為v=350 km/h,,基函數(shù)個(gè)數(shù)為11。當(dāng)噪聲功率為0 dBm時(shí),,OGCE-BEM的3種調(diào)制方式的NMSE都可以達(dá)到10-6,,且調(diào)制方式為QPSK時(shí),OGCE-BEM的NMSE性能最優(yōu),,其次是16QAM,,64QAM最差。即使當(dāng)噪聲功率達(dá)到10 dBm時(shí),,64QAM的NMSE也能達(dá)到10-5,。

tx6-t5.gif

4 結(jié)論

    本文研究了高移動(dòng)性場(chǎng)景下LTE-R系統(tǒng)的信道估計(jì)問題。根據(jù)BEM,,將信道沖激響應(yīng)表示為一系列基函數(shù)與系數(shù)乘積和的形式,。通過對(duì)基函數(shù)系數(shù)進(jìn)行估計(jì),,實(shí)現(xiàn)對(duì)LTE-R系統(tǒng)的信道估計(jì),。由于本文只針對(duì)導(dǎo)頻位置的信道狀態(tài)進(jìn)行估計(jì),下一步將考慮插值算法,實(shí)現(xiàn)對(duì)數(shù)據(jù)位置的信道狀態(tài)進(jìn)行估計(jì),。同時(shí),,根據(jù)得到的估計(jì)誤差,對(duì)基函數(shù)的個(gè)數(shù)進(jìn)行動(dòng)態(tài)調(diào)整,。

參考文獻(xiàn)

[1] HE R S,,AI B,WANG G P,,et al.High-speed railway communications:from GSM-R to LTE-R[J].IEEE Vehicular Technology Magazine,,2016,11(3):49-58.

[2] ZHOU S L,,GIANNAKIS G B,,SCAGLIONE A.Long codes for generalized FH-OFDMA through unknown multipath channels[J].IEEE Transactions on Communications,2001,,49(4):721-733.

[3] SONG S,,SINGER A C.Blind OFDM channel estimation using FIR constraints: reduced complexity and identifiability[J].IEEE Transactions on Information Theory,2007,,53(3):1136-1147.

[4] BARHUMI I,,LEUS G,MOONEN M.Optimal training design for MIMO OFDM systems in mobile wireless channels[J].IEEE Transactions on Signal Processing,,2003,,51(6):1615-1624.

[5] LI Y,SESHADRI N,,ARIYAVASITAKUL S.Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels[J].IEEE Journal on Selected Areas in Communications,,1999,17(3):461-471.

[6] MEDLES A,,SLOCK D T M.Semiblind channel estimation for MIMO spatial multiplexing systems[C].IEEE Vehicular Technology Conference,,2001,2:1240-1244.

[7] MEDLES A,,SLOCK D T M.Linear precoding for spatial multiplexing MIMO systems:blind channel estimation aspects[C].IEEE International Conference on Communications(ICC),,2002,1:401-405.

[8] RABBI M F,,HOU S W,,KO C C.High mobility orthogonal frequency division multiple access channel estimation using basis expansion model[J].IET Communications,2010,,4(3):353-367.

[9] LIU L,,TAO C,QIU J H,,et al.Position-based modeling for wireless channel on high-speed railway under a viaduct at 2.35 GHz[J].IEEE Journal on Selected Areas in Communications,,2012,,30(4):834-845.

[10] ZHAO Y S,LI X,,LI Y,,et al.Resource allocation for high-speed railway downlink MIMO-OFDM system using quantum-behaved particle swarm optimization[C].IEEE International Conference on Communications(ICC),2013:2343-2347.

[11] GUAN K,,ZHONG Z D,,AI B.Assessment of LTE-R using high speed railway channel model[C].Third International Conference on Communications and Mobile Computing(CMC),2011:461-464.

[12] TKAC A,,WIESER V,,POLLAK S.Calculation of impulse response in rician and rayleigh channel[C].ELEKTRO,2012:99-102.

[13] HU D,,WANG X D,,HE L H.A new sparse channel estimation and tracking method for time-varying OFDM systems[J].IEEE Transactions on Vehicular Technology,2013,,62(9):4648-4653.

[14] TUGNAIT J K,,HE S C,KIM H.Doubly selective channel estimation using exponential basis models and subblock tracking[J].IEEE Transactions on Signal Processing,,2010,,58(3):1275-1289.

[15] KHAL R N,ZHANG J R,,ZAKHAROV Y V.Robustness of joint bayesian frequency offset and channel estimation based on basis expansion models[C].Conference Record of the Forty-Third Asilomar Conference on Signals,,Systems and Computers,Pacific Grove,,2009:957-961.

[16] 張欽娟,,武穆清,郭起霖,,等.OFDM系統(tǒng)中優(yōu)化的泛化復(fù)指數(shù)基擴(kuò)展模型[J].西安電子科技大學(xué)學(xué)報(bào),,2012(3):131-135.



作者信息:

黃錦錦,趙宜升,,陳忠輝,,賴鑫琳,董志翔

(福州大學(xué) 物理與信息工程學(xué)院,,福建 福州350108)

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。