文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2020.10.009
引用格式: 張金霜,,梁樹(shù)杰,左敬龍. 基于GWO-SVM算法的物聯(lián)網(wǎng)入侵檢測(cè)研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,,2020,,39(10):44-48.
0 引言
隨著信息通信產(chǎn)業(yè)的發(fā)展,,物聯(lián)網(wǎng)技術(shù)已被廣泛應(yīng)用于人們生產(chǎn)生活中,,其中智能家居就是物聯(lián)網(wǎng)技術(shù)運(yùn)用的典型代表。然而物聯(lián)網(wǎng)技術(shù)在給人們生活帶來(lái)便捷的同時(shí),,也帶來(lái)了新的安全威脅,,如個(gè)人隱私泄露、越權(quán)操作,、數(shù)據(jù)破壞等[1],。其中,物聯(lián)網(wǎng)的通信與信息安全問(wèn)題是關(guān)鍵一環(huán),通過(guò)使用網(wǎng)絡(luò)入侵檢測(cè)技術(shù),,能有效抵御或降低此類(lèi)安全風(fēng)險(xiǎn),。
網(wǎng)絡(luò)入侵檢測(cè)的核心是分類(lèi)算法。盡管當(dāng)下使用深度學(xué)習(xí)進(jìn)行數(shù)據(jù)分類(lèi)十分流行,,但支持向量機(jī)(Support Vector Machine,,SVM)作為一種經(jīng)典的分類(lèi)算法,因其具有小樣本學(xué)習(xí),、避免“維數(shù)災(zāi)難”,、算法魯棒性好等優(yōu)點(diǎn),在網(wǎng)絡(luò)入侵檢測(cè)的研究中仍占有一席之地,,具有良好的推廣性和適應(yīng)性,。在面向物聯(lián)網(wǎng)環(huán)境,相較于其他常見(jiàn)的分類(lèi)算法,,如貝葉斯網(wǎng)絡(luò),、KNN算法、模糊聚類(lèi),、隨機(jī)森林等,,SVM表現(xiàn)出更好的綜合性能[2]。
SVM的分類(lèi)效果與其參數(shù)選擇有較大的關(guān)系,,關(guān)于參數(shù)如何選擇問(wèn)題,,常用的方法是使用群智能優(yōu)化算法求解,如粒子群算法(Particle Swarm Optimization,,PSO),、遺傳算法(Genetic Algorithm,GA),、人工蜂群算法(Artificial Bee Colony,,ABC)等[3-6]。針對(duì)部分優(yōu)化算法存在收斂速度慢,、容易陷入局部最優(yōu)解等缺點(diǎn),,本文引入一種新型元啟發(fā)性?xún)?yōu)化算法——灰狼優(yōu)化算法對(duì)SVM參數(shù)進(jìn)行優(yōu)化。
灰狼優(yōu)化算法(Grey Wolf Optimizer,,GWO)由學(xué)者M(jìn)IRJALILI S等在2014年提出[7],,它通過(guò)模擬自然界灰狼種群等級(jí)機(jī)制和捕獵行為,確定捕食獵物的位置,,實(shí)現(xiàn)優(yōu)化搜索目的,。灰狼算法具有實(shí)現(xiàn)步驟簡(jiǎn)單,,需調(diào)整的參數(shù)少,,收斂速度快,,有較強(qiáng)的全局搜索能力等特點(diǎn),在工程領(lǐng)域得到廣泛應(yīng)用[8-10],。
本文詳細(xì)內(nèi)容請(qǐng)下載:http://forexkbc.com/resource/share/2000003139
作者信息:
張金霜1,,梁樹(shù)杰1,左敬龍2
(1.廣東茂名幼兒師范專(zhuān)科學(xué)校 教育信息技術(shù)中心,,廣東 茂名525000,;
2.廣東石油化工學(xué)院 網(wǎng)絡(luò)與教育信息技術(shù)中心,廣東 茂名525000)