基于二倍體顯性機(jī)制的透視變換矩陣參數(shù)優(yōu)化
2020年信息技術(shù)與網(wǎng)絡(luò)安全第3期
方樹,,陳賢富
(中國(guó)科學(xué)技術(shù)大學(xué) 微電子學(xué)院,,安徽 合肥 230027)
摘要: 圖像拼接的基礎(chǔ)是將所有待拼接的圖像轉(zhuǎn)換到同一平面上,,而透視變換矩陣描述的就是一個(gè)平面到另一個(gè)平面的投影變換,,反映了圖像坐標(biāo)點(diǎn)之間的一一對(duì)應(yīng)關(guān)系,。但當(dāng)透視變換矩陣中參數(shù)精度較低時(shí)會(huì)導(dǎo)致圖像拼接效果不佳,,拼接過程中會(huì)出現(xiàn)公共區(qū)域無(wú)法對(duì)接,、有鬼影等現(xiàn)象,。提出了一種基于二倍體顯性機(jī)制的DNA遺傳算法(AO方法)的矩陣參數(shù)優(yōu)化方案,,AO方法在優(yōu)化效率上能以較快的速度和較高的精度搜索到問題的全局最優(yōu)解,從而提高透視變換矩陣參數(shù)的精度,。實(shí)驗(yàn)結(jié)果顯示,,所提出的方法能夠較好地優(yōu)化矩陣參數(shù),符合期望目標(biāo),。
中圖分類號(hào):TP301
文獻(xiàn)標(biāo)識(shí)碼:A
DOI: 10.19358/j.issn.2096-5133.2020.03.008
引用格式:方樹,,陳賢富.基于二倍體顯性機(jī)制的透視變換矩陣參數(shù)優(yōu)化[J].信息技術(shù)與網(wǎng)絡(luò)安全,2020,39(3):40-43,,55.
文獻(xiàn)標(biāo)識(shí)碼:A
DOI: 10.19358/j.issn.2096-5133.2020.03.008
引用格式:方樹,,陳賢富.基于二倍體顯性機(jī)制的透視變換矩陣參數(shù)優(yōu)化[J].信息技術(shù)與網(wǎng)絡(luò)安全,2020,39(3):40-43,,55.
Parameter optimization of perspective transformation matrix based on diploid dominant mechanism
Fang Shu,,Chen Xianfu
(Institute of Microelectronics,University of Science and Technology of China,Hefei 230027, China)
Abstract: The basis of image stitching is to transform all the images to be stitched to the same plane,and the perspective transformation matrix describes the projection transformation from one plane to another.However,when the accuracy of the parameters in the perspective transformation matrix is low,the image stitching effect will be poor,and in the image stitching process,the common areas will not be docked and ghosts will appear.This paper proposes a matrix parameter optimization scheme of the DNA genetic algorithm (AO method) based on the diploid dominant mechanism.The AO method can search the global optimum of the problem at a faster speed and higher accuracy in the optimization efficiency.The experimental results show that the method adopted in this paper can better optimize the matrix parameters and meet the expected goals.
Key words : perspective transformation matrix;genetic algorithm;diploid dominant mechanism;parameter optimization
0 引言
隨著科學(xué)技術(shù)的飛速發(fā)展,人們對(duì)全景圖像在不同場(chǎng)合應(yīng)用涌現(xiàn)出新的要求:安防監(jiān)控,、無(wú)人機(jī)技術(shù),、VR技術(shù)等,圖像拼接技術(shù)也得到越來(lái)越廣泛的運(yùn)用,。而圖像拼接技術(shù)的重中之重在于圖像的配準(zhǔn),。圖像配準(zhǔn)是對(duì)圖像的重疊區(qū)域進(jìn)行對(duì)齊的過程,首先是圖像特征點(diǎn)檢測(cè),,其次是完成特征點(diǎn)的匹配,,再根據(jù)匹配點(diǎn)對(duì)的集合計(jì)算出透視變換矩陣的各個(gè)參數(shù),最后通過透視變換矩陣完成圖像中的坐標(biāo)變換,。其中變換矩陣參數(shù)的精度很大程度上影響了圖像配準(zhǔn)效果,。
本文詳細(xì)內(nèi)容請(qǐng)下載:http://forexkbc.com/resource/share/2000003176
作者信息:
方樹,陳賢富
(中國(guó)科學(xué)技術(shù)大學(xué) 微電子學(xué)院,,安徽 合肥 230027)
此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。