《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 電源技術(shù) > 設(shè)計應(yīng)用 > 電動汽車接入微網(wǎng)優(yōu)化調(diào)度模型建立及其算例
電動汽車接入微網(wǎng)優(yōu)化調(diào)度模型建立及其算例
2021年電子技術(shù)應(yīng)用第1期
金商鶴1,張 宇1,,2,王育飛1,,時珊珊2,王皓靖2
1.上海電力大學(xué) 電氣工程學(xué)院,,上海200090,;2.國網(wǎng)上海市電力公司電力科學(xué)研究院,上海200437
摘要: 為了解決風(fēng),、光出力波動性和電動汽車接入電網(wǎng)無序充電問題,根據(jù)電動汽車用戶對激勵因素的敏感程度不同,,建立電動汽車分類接入微網(wǎng)兩階段優(yōu)化調(diào)度模型,,并開展算例分析。研究結(jié)果表明,,與無序充電相比,,電動汽車兩階段調(diào)度微網(wǎng)在負(fù)荷峰、谷時段的?琢值都明顯減小,,儲能單元基本能滿足微網(wǎng)運(yùn)行需求,,風(fēng)光利用率高達(dá)95.43%,聯(lián)絡(luò)線交換功率僅為24.2 kW,,顯著減小微網(wǎng)風(fēng)光出力波動對大電網(wǎng)的影響,。隨著III類電動汽車占比逐漸增加,風(fēng)光利用率明顯上升,。算例分析證明所提出的兩階段優(yōu)化調(diào)度模型能有效降低微網(wǎng)外購電量,,提高風(fēng)光利用率,改善微網(wǎng)功率波動對大電網(wǎng)的影響,。
中圖分類號: TP33
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.200179
中文引用格式: 金商鶴,,張宇,王育飛,,等. 電動汽車接入微網(wǎng)優(yōu)化調(diào)度模型建立及其算例[J].電子技術(shù)應(yīng)用,,2021,47(1):82-85,,107.
英文引用格式: Jin Shanghe,,Zhang Yu,,Wang Yufei,et al. Establishment of optimal scheduling model for electric vehicles connected to microgrid and calculation examples[J]. Application of Electronic Technique,,2021,,47(1):82-85,107.
Establishment of optimal scheduling model for electric vehicles connected to microgrid and calculation examples
Jin Shanghe1,,Zhang Yu1,2,,Wang Yufei1,Shi Shanshan2,,Wang Haojing2
1.Shanghai University of Electric Power,,Shanghai 200090,China,; 2.State Grid Shanghai Electric Power Research Institute,,Shanghai 200437,China
Abstract: In order to solve the problem of fluctuation of wind-power output and disordered charging of electric vehicles connected to the power grid, a two-stage optimal dispatching model of electric vehicles connected to the micro grid by classification was established according to the sensitivity of electric vehicle users to the incentive factors, and a case study was carried out. The research results show that compared with disordered charging, the two-stage dispatching micro grid of electric vehicles significantly reduces the value in load peak and valley periods, the energy storage unit can basically meet the operation demand of the micro grid, the wind-energy utilization rate is up to 95.43%, and the connection line exchange power is only 24.2 kW, which significantly reduces the impact of wind-energy fluctuations of the micro grid on the large power grid. With the increase of the proportion of class III electric vehicles, the utilization rate of wind-power increased obviously. An example shows that the proposed two-stage optimal dispatching model can effectively reduce the power purchased from the micro grid, which improves the utilization rate of wind and wind, and improves the influence of micro grid power fluctuations on the large power grid.
Key words : access micro network,;electric cars,;scheduling model;wind utilization rate,;the example analysis

0 引言

    近年來微網(wǎng)和電動汽車發(fā)展突飛猛進(jìn),,風(fēng)、光出力波動性和電動汽車接入電網(wǎng)無序充電問題亟待解決[1],。為此國內(nèi)外學(xué)者構(gòu)想將電動汽車與微網(wǎng)協(xié)調(diào)運(yùn)行,,以緩解兩者單獨(dú)接入電網(wǎng)的不利影響,促進(jìn)兩者的應(yīng)用和發(fā)展[2-5],。在微電網(wǎng)中連接電動汽車進(jìn)行儲能時,,可以有效避免發(fā)生間歇性新能源出力的情況,現(xiàn)階段已有許多學(xué)者研究了將電動汽車與微網(wǎng)進(jìn)行連接時的優(yōu)化調(diào)度技術(shù),。例如,,文獻(xiàn)[6]-[8]設(shè)計了一種對含有電動汽車的微網(wǎng)系統(tǒng)進(jìn)行多目標(biāo)調(diào)度的分析模型,結(jié)果發(fā)現(xiàn)采取有序充放電的方式可以獲得比無序充電入網(wǎng)方式更高的經(jīng)濟(jì)性,;文獻(xiàn)[8]報道了由電動汽車構(gòu)成的光,、風(fēng)、儲能微電網(wǎng)調(diào)度模型,,通過引入更加協(xié)調(diào)的運(yùn)行模式能夠有效減小系統(tǒng)的運(yùn)行成本并降低電動汽車運(yùn)行費(fèi)用,;文獻(xiàn)[9]同時分析了微網(wǎng)發(fā)電成本及其對環(huán)境造成的影響,對分布式電源的出力狀況進(jìn)行了動態(tài)分析,,因此能夠?qū)崿F(xiàn)在低發(fā)電成本的條件下獲得更優(yōu)的環(huán)境效益,;文獻(xiàn)[10]根據(jù)微網(wǎng)內(nèi)存在的不確定因素設(shè)計得到了具有良好魯棒性的經(jīng)濟(jì)調(diào)度模型,并達(dá)到了較低的電動車損耗,,同時滿足魯棒性與經(jīng)濟(jì)性要求?,F(xiàn)有文獻(xiàn)多通過直接負(fù)荷控制的方式滿足實施方需求,,其對電動汽車特殊性的考慮不夠充分,較少關(guān)注單輛電動汽車參與激勵型需求響應(yīng)項目后的實際響應(yīng)效果[11-14],。文獻(xiàn)[15]-[16]以負(fù)荷峰值削減為目標(biāo),,制定有序的電動汽車充電策略,該類方法通常缺少對電動汽車參與響應(yīng)的效果評估,,忽略用戶側(cè)需求[17],。上述文獻(xiàn)較少考慮電動汽車車主響應(yīng)意愿,單方面認(rèn)為入網(wǎng)的電動汽車皆可參與充放電調(diào)度,;其次,,優(yōu)化調(diào)度通常直接針對單輛電動汽車,電動汽車數(shù)量較多時容易引發(fā)“維數(shù)災(zāi)”問題,。

    本文從電動汽車用戶響應(yīng)意愿角度出發(fā),,建立兩階段優(yōu)化調(diào)度模型,兩階段優(yōu)化方法的決策變量數(shù)顯著減少,,有利于大量電動汽車充放電優(yōu)化問題的快速求解,。




本文詳細(xì)內(nèi)容請下載:http://forexkbc.com/resource/share/2000003326




作者信息:

金商鶴1,張  宇1,,2,,王育飛1,時珊珊2,,王皓靖2

(1.上海電力大學(xué) 電氣工程學(xué)院,上海200090,;2.國網(wǎng)上海市電力公司電力科學(xué)研究院,,上海200437)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載,。