一種基于實例分割和點云配準的六維位姿估計方法
信息技術與網(wǎng)絡安全
侯大偉
(中國科學技術大學 信息科學技術學院,,安徽 合肥230026)
摘要: 本文提出一種基于Mask R-CNN實例分割網(wǎng)絡和Super4PCS點云配準算法來估計物體六維姿態(tài)的方法,。通過目標點云與已知位姿的參考點云進行配準,,可以獲取目標的六維姿態(tài)。但實際中往往采用三維設備掃描目標的整體環(huán)境,,生成的點云數(shù)量龐大,,直接作為源點云與參考點云配準時,會由于候選集較多從而導致運算時間太長,,因此本文先對目標實例分割處理后再配準:首先,,利用深度相機獲取整體環(huán)境的RGB-D圖,其次利用Mask R-CNN模型將把目標分割出來,,并將分割的目標RGB-D圖轉(zhuǎn)化為點云圖,,利用Super4PCS點云配準算法與參考點云進行配準,最終得到目標的六維位姿,。在自制作的數(shù)據(jù)集上進行了驗證,,對比分割前后的四組實驗,時間降低率約為60%-80%,,有效證明了本方法的可行性,。
中圖分類號: TP391
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.06.010
引用格式: 侯大偉. 一種基于實例分割和點云配準的六維位姿估計方法[J].信息技術與網(wǎng)絡安全,2021,,40(6):56-61.
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.06.010
引用格式: 侯大偉. 一種基于實例分割和點云配準的六維位姿估計方法[J].信息技術與網(wǎng)絡安全,2021,,40(6):56-61.
6D pose estimation based on instance segmentation and point cloud registration
Hou Dawei
(School of Information Science and Technology,,University of Science and Technology of China,,Hefei 230026,China)
Abstract: This paper proposes a method to estimate the six-dimensional pose of an object based on the Mask R-CNN instance segmentation network and the Super4PCS point cloud registration algorithm. The six-dimensional pose of the target can be generally estimated by registering the point cloud of the environment and the target. The number of point clouds generated by the scanning the overall environment with 3D equipment is huge, the calculation time will be too long when directly using the source point cloud to register the reference point cloud. Therefore, this article will divide the target before registration. Firstly, we obtain the RGB-D map of the overall environment by the depth-sensing camera. Secondly, we use the Mask-R CNN model to segment the target, after that we convert the RGB-D map of the segmented target into a point cloud image and complete the point cloud registration of the reference and the segmented target through Super4PCS algorithm. We finally obtain the six-dimensional pose of the target and compare the four sets of experiments based on our dataset. The results show that the time reduction rate is about 60%-80%, which effectively illustrates the feasibility of our method.
Key words : 6D pose estimation,;Mask R-CNN instance segmentation,;Super4PCS point cloud registration
0 引言
點云配準是三維重建、工業(yè)測量,、機器人抓取等方面的一種常見方法,,目標是將不同視角下點云拼接成一塊完整的點云數(shù)據(jù)。隨著深度相機的廣泛應用,,研究人員可以便捷地獲取三維空間的點云數(shù)據(jù),,用以估計物體的六維位姿。圖1(a)和圖1(b)是在不同視角下的存在交集的兩片點云,,不斷地調(diào)整交集部分的點云直到基本重疊,,最終兩片點云拼接為一個整體(圖1(c))。
以上兩片點云配準的過程,,本質(zhì)上得到的是兩片點云之間相對位姿的變換矩陣,。假設其中一片點云參考目標,,即相對世界坐標系的位姿參數(shù)均已知,,便可推理得到另一片點云的位姿,從而實現(xiàn)目標點云的位姿估計,。
本文詳細內(nèi)容請下載:http://forexkbc.com/resource/share/2000003601
作者信息:
侯大偉
(中國科學技術大學 信息科學技術學院,,安徽 合肥230026)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉(zhuǎn)載,。