基于核函數(shù)及參數(shù)優(yōu)化的KPLS質(zhì)量預(yù)測(cè)研究
2021年電子技術(shù)應(yīng)用第12期
陳 路,,鄭 丹,童楚東
寧波大學(xué) 信息科學(xué)與工程學(xué)院,,浙江 寧波315211
摘要: 核偏最小二乘(KPLS)在工業(yè)過(guò)程監(jiān)測(cè)和質(zhì)量預(yù)測(cè)中得到了廣泛的應(yīng)用,核函數(shù)和核參數(shù)的選取對(duì)KPLS質(zhì)量預(yù)測(cè)結(jié)果有重要影響,。然而,,如何選擇核函數(shù)類型和核參數(shù)一直是該方法應(yīng)用的瓶頸。針對(duì)以上問(wèn)題,,提出一種改進(jìn)遺傳算法的核函數(shù)優(yōu)化方法,。該方法將核的種類及核參數(shù)作為優(yōu)化的決策變量,以均方根誤差為目標(biāo),,分別從編碼方案,、遺傳策略、適應(yīng)度函數(shù)優(yōu)化,、交叉和變異算法等方面進(jìn)行設(shè)計(jì),,以保證核函數(shù)種類的多樣性,利用2折交叉驗(yàn)證法對(duì)訓(xùn)練結(jié)果進(jìn)行驗(yàn)證,。以田納西-伊斯曼過(guò)程(TE)與MATLAB結(jié)合進(jìn)行仿真實(shí)驗(yàn),,仿真結(jié)果表明,該方法能尋找到最優(yōu)核函數(shù)以及其核參數(shù),,具有很好的穩(wěn)定性和一致性,。
中圖分類號(hào): TN081;TP277
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.201259
中文引用格式: 陳路,,鄭丹,,童楚東. 基于核函數(shù)及參數(shù)優(yōu)化的KPLS質(zhì)量預(yù)測(cè)研究[J].電子技術(shù)應(yīng)用,,2021,47(12):100-104.
英文引用格式: Chen Lu,,Zheng Dan,,Tong Chudong. The optimization of the kind and parameters of kernel function in KPLS for quality prediction[J]. Application of Electronic Technique,2021,,47(12):100-104.
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.201259
中文引用格式: 陳路,,鄭丹,,童楚東. 基于核函數(shù)及參數(shù)優(yōu)化的KPLS質(zhì)量預(yù)測(cè)研究[J].電子技術(shù)應(yīng)用,,2021,47(12):100-104.
英文引用格式: Chen Lu,,Zheng Dan,,Tong Chudong. The optimization of the kind and parameters of kernel function in KPLS for quality prediction[J]. Application of Electronic Technique,2021,,47(12):100-104.
The optimization of the kind and parameters of kernel function in KPLS for quality prediction
Chen Lu,,Zheng Dan,Tong Chudong
Faculty of Electrical Engineering and Computer Science,,Ningbo University,,Ningbo 315211,China
Abstract: Kernel partial least squares(KPLS) has been widely used in industrial process monitoring and quality prediction. The choice of kernel function and kernel parameters has an important impact on the KPLS quality prediction results. However, how to choose the kernel function type and kernel parameters has always been the bottleneck of the application of this method. To solve the above problems, a kernel function optimization method based on improved genetic algorithm is proposed. In this method, the kernel type and kernel parameters are used as the optimal decision variables, and the root mean square error is targeted. It is designed in terms of coding scheme, genetic strategy, fitness function optimization, crossover and mutation algorithms to ensure the variety of kernel functions, and uses the 2-fold cross-validation method to verify the training results. The Tennessee-Eastman Process(TE) is combined with MATLAB for simulation experiments. The simulation results show that the method can find the optimal kernel function and its kernel parameters, and has good stability and consistency.
Key words : kernel partial least squares,;genetic algorithm,;quality prediction;k-fold cross-validation
0 引言
質(zhì)量預(yù)測(cè)與分析是實(shí)現(xiàn)工業(yè)過(guò)程閉環(huán)控制的基礎(chǔ)和關(guān)鍵[1],?;贙PLS的方法可以提高質(zhì)量預(yù)測(cè)精度,許多研究人員以KPLS方法為基石,,提出了許多解決非線性問(wèn)題的方法[1-8],。
核函數(shù)是KPLS方法的關(guān)鍵,而KPLS選擇核函數(shù)并不是任意的,,必須要滿足Mercer定理,。特定的內(nèi)核函數(shù)選擇隱含地決定了映射和特征空間。在KPLS中,,由于提取系統(tǒng)非線性特征的程度是基于核函數(shù)的,,因此核函數(shù)的選擇是最重要的。如何給基于KPLS的質(zhì)量預(yù)測(cè)選擇理想的核函數(shù)和核參數(shù)是一個(gè)開放的問(wèn)題[9-10],。而且,,一旦設(shè)置了核函數(shù),就需要設(shè)置適當(dāng)?shù)暮藚?shù),。但是,,沒(méi)有一個(gè)理論框架能尋找到指定核函數(shù)的參數(shù)最最優(yōu)值,也就是說(shuō)基于KPLS的質(zhì)量預(yù)測(cè)很大程度上取決于選擇的核函數(shù)和核參數(shù),。
本文詳細(xì)內(nèi)容請(qǐng)下載:http://forexkbc.com/resource/share/2000003880,。
作者信息:
陳 路,鄭 丹,,童楚東
(寧波大學(xué) 信息科學(xué)與工程學(xué)院,,浙江 寧波315211)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載,。