《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于背景字典構造的稀疏表示高光譜目標檢測
基于背景字典構造的稀疏表示高光譜目標檢測
2022年電子技術應用第1期
陶 洋,林飛鵬,,楊 雯,,翁 善
重慶郵電大學 通信與信息工程學院,,重慶400065
摘要: 針對現(xiàn)有基于稀疏表示的目標檢測算法采用同心雙窗口構建背景字典的過程中,,目標像元將會對背景字典產生干擾的問題,,提出基于背景字典構造的稀疏表示高光譜目標檢測算法,。該算法將高光譜圖像分解成低秩背景和稀疏目標,,引入目標字典作為稀疏目標的先驗信息,,更好地分離目標和背景,構建純凈背景字典,。通過在4個公開高光譜圖像數(shù)據(jù)集上仿真分析,,證明所提出的算法具有出色的檢測性能。
中圖分類號: TN10
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.211420
中文引用格式: 陶洋,,林飛鵬,,楊雯,等. 基于背景字典構造的稀疏表示高光譜目標檢測[J].電子技術應用,,2022,,48(1):124-128.
英文引用格式: Tao Yang,Lin Feipeng,,Yang Wen,,et al. Background dictionary construction-based sparse representation hyperspectral target detection[J]. Application of Electronic Technique,2022,,48(1):124-128.
Background dictionary construction-based sparse representation hyperspectral target detection
Tao Yang,,Lin Feipeng,Yang Wen,,Weng Shan
School of Communication and Information Engineering,,Chongqing University of Posts and Telecommunications,, Chongqing 400065,,China
Abstract: Aiming at the existing target detection algorithms based on sparse representation, in the process of building the background dictionary with concentric double windows, the target pixels will interfere with the background dictionary. A sparse representation hyperspectral target detection algorithm based on background dictionary is proposed. The algorithm decomposes the hyperspectral image into low rank background and sparse target, and introduces the target dictionary as the prior information of sparse target, which can separate the target and background better and construct a pure background dictionary. Simulation results on four public hyperspectral image datasets show that the proposed algorithm has excellent detection performance.
Key words : hyperspectral image;sparse representation,;binary-class,;target dictionary;low-rank

0 引言

    高光譜圖像目標檢測是一個典型的二分類問題,,目的是將圖像中的每個像素標記為目標或背景[1],,被廣泛應用于軍事、農業(yè),、礦物等領域[2],。

    經典的目標檢測算法包括約束能量最小化(Constrained Energy Minimization,CEM)[3],、自適應一致余弦估計(Adaptive Coherence Estimator,,ACE)[4]。但是經典算法有效性都依賴于對統(tǒng)計模型的假設,現(xiàn)實場景中不能保證一定成立,。近些年來,,稀疏表示在高光譜領域也得到了很好的發(fā)展,研究人員相繼提出了基于稀疏表示(Sparse Representation for Target Detection,,STD)[5]以及基于二元假設稀疏表示的目標檢測(Sparse Representation-Based Binary Hypothesis,,SRBBH)[6]。最近,,有人提出了一種基于單頻譜驅動的二分類稀疏表示檢測器[7],。




本文詳細內容請下載:http://forexkbc.com/resource/share/2000003922




作者信息:

陶  洋,,林飛鵬,,楊  雯,翁  善

(重慶郵電大學 通信與信息工程學院,,重慶400065)




wd.jpg

此內容為AET網站原創(chuàng),,未經授權禁止轉載。