張江波
?。ê颖惫こ檀髮W(xué) 信息與電氣工程學(xué)院,河北 邯鄲 056038)
摘要:為了提高在密集多徑信道下信號(hào)檢測(cè)性能,,提出了一種基于稀疏表示的非相干檢測(cè)方法,。此方法考慮了稀疏表示的原理及特點(diǎn), 以稀疏信號(hào)分解、主成分分析及特征信號(hào)提取為基礎(chǔ), 通過(guò)利用假設(shè)檢驗(yàn)方法對(duì)信號(hào)進(jìn)行最終判決, 實(shí)現(xiàn)了在密集多徑環(huán)境下的信號(hào)檢測(cè)。仿真驗(yàn)證了所提方案的可行性,,對(duì)比了傳統(tǒng)方案和所提方案的檢測(cè)性能,,結(jié)果表明該方法具有更好的檢測(cè)能力。
關(guān)鍵詞:信號(hào)檢測(cè),;稀疏表示,;非相干檢測(cè);密集多徑信道
中圖分類(lèi)號(hào):TN914文獻(xiàn)標(biāo)識(shí)碼:ADOI: 10.19358/j.issn.1674-7720.2017.02.020
引用格式:張江波.基于稀疏表示的密集多徑非相干信號(hào)檢測(cè)方法研究[J].微型機(jī)與應(yīng)用,,2017,36(2):66-69.
0引言
隨著通信技術(shù)的發(fā)展,,未來(lái)無(wú)線(xiàn)通信技術(shù)不斷向著高速傳輸方向邁進(jìn),移動(dòng)通信網(wǎng)絡(luò)標(biāo)準(zhǔn)逐漸邁向5G時(shí)代,。在5G待選通信技術(shù)中,,毫米波通信技術(shù)可能成為下一代移動(dòng)通信的關(guān)鍵技術(shù)。其傳輸帶寬由低頻段增至高頻段,,大帶寬具有擴(kuò)頻增益,、降低信號(hào)輻射等優(yōu)點(diǎn),可以為大規(guī)模無(wú)線(xiàn)傳感器網(wǎng)絡(luò),、體域網(wǎng),、個(gè)域網(wǎng)等提供低功耗、綠色通信的解決方法,,對(duì)未來(lái)無(wú)線(xiàn)網(wǎng)絡(luò)的發(fā)展具有重要意義[1],。
在毫米波通信技術(shù)中,典型的應(yīng)用場(chǎng)景常常是在室內(nèi)完成,,然而,,當(dāng)無(wú)線(xiàn)傳輸系統(tǒng)帶寬超過(guò)500 MHz時(shí),這種無(wú)線(xiàn)信號(hào)將呈現(xiàn)密集多徑特性,。由于室內(nèi)存在著大量反射體,,這種密集多徑信號(hào)將非常復(fù)雜,給信號(hào)接收機(jī)的設(shè)計(jì)帶來(lái)諸多難題,。在傳統(tǒng)的窄帶/寬帶系統(tǒng)中,,通常包含3~10個(gè)多徑信號(hào),,一般可以通過(guò)信道估計(jì),、Rake接收機(jī)進(jìn)行信號(hào)處理[2],通過(guò)有效的分集增益減小多徑帶來(lái)的損耗,,提高系統(tǒng)的性能,。但是,在毫米波大帶寬,、密集多徑的情況下,,路徑多達(dá)幾十條至上百條。多徑數(shù)量的急劇增加,使得接收機(jī)的采樣頻率高達(dá)數(shù)兆赫茲,,大大增加了數(shù)模采樣的功耗和對(duì)器件的要求,,其相應(yīng)的信道估計(jì)算法的復(fù)雜度也極高。此外,,由于Rake接收機(jī)需要采用大量接收抽頭進(jìn)行合并,,這種情況使得信號(hào)接收機(jī)的系統(tǒng)異常復(fù)雜,硬件要求極高而難以實(shí)現(xiàn),。
為了克服上述問(wèn)題,,文獻(xiàn)[3]提出了簡(jiǎn)化密集多徑信道下的帶寬信號(hào)檢測(cè)過(guò)程(TransmittedReference, T-R)的方案, 這種方案將第一個(gè)信號(hào)作為傳送模板,在相鄰的第二個(gè)信號(hào)上加載有用信息,,然后對(duì)這兩個(gè)信號(hào)做信號(hào)相關(guān)處理,,實(shí)現(xiàn)了信道的有效估計(jì)和Rake接收,。該方案雖然降低了密集多徑下接收機(jī)的復(fù)雜度,但是犧牲了一半的傳輸效率,。
近幾年,在密集多徑信道下的非相干檢測(cè)[45](NonCoherent Detection, NCD)得到了廣泛關(guān)注,,其代表技術(shù)是能量檢測(cè)[67](Energy Detector,,ED)。能量檢測(cè)具有許多優(yōu)勢(shì),,例如無(wú)需進(jìn)行信道估計(jì),,避免Rake接收結(jié)構(gòu),顯著降低了對(duì)通信系統(tǒng)同步的要求等,。這些優(yōu)點(diǎn)為進(jìn)一步降低無(wú)線(xiàn)通信系統(tǒng)復(fù)雜性以及為密集多徑大帶寬通信技術(shù)的發(fā)展提供了可行方案,。然而,現(xiàn)有的非相干能量檢測(cè)技術(shù)受到噪聲和環(huán)境影響較為嚴(yán)重,,其檢測(cè)性能有待進(jìn)一步提高,。
信號(hào)稀疏表示理論由于其獨(dú)特的魅力成為近20年來(lái)信號(hào)處理界一個(gè)非常引人關(guān)注的研究熱點(diǎn)[8]。信號(hào)稀疏表示可以使得信號(hào)獲得更為簡(jiǎn)潔的表達(dá)方式,,從而使信號(hào)中所蘊(yùn)含的信息更容易地表現(xiàn)出來(lái),,更方便進(jìn)一步對(duì)信號(hào)進(jìn)行加工處理[9]。本文針對(duì)現(xiàn)有能量檢測(cè)的特征,,提出一種基于稀疏信號(hào)處理的信號(hào)檢測(cè)方案,,用以提高非相干檢測(cè)機(jī)制的性能。本文首先介紹了稀疏表示的原理,,隨后給出基于稀疏表示的稀疏信號(hào)分解,、主成分分析及特征信號(hào)提取,最后利用假設(shè)檢驗(yàn)方法對(duì)信號(hào)進(jìn)行最終判決,。為驗(yàn)證所提方案的可行性及有效性,,本文通過(guò)仿真實(shí)驗(yàn)對(duì)比了傳統(tǒng)方案與所提的方法,,結(jié)果表明本文所提方案的檢測(cè)能力更優(yōu)秀。
1稀疏表示
稀疏表示[10]是指在某種變換或冗余完備字典上用盡可能少的測(cè)量值來(lái)表征原始信號(hào),。假設(shè)一個(gè)超完備冗余字典為D=[d1,…,dn],,輸入信號(hào)集合為y∈Rm,這個(gè)輸入信號(hào)可以被重新表示為D與稀疏系數(shù)矩陣x=[x1,…,xn]T的一種稀疏線(xiàn)性組合,,表達(dá)式為
這里,,x即為輸入信號(hào)y的稀疏表示系數(shù)。
稀疏表示的問(wèn)題在于尋找n×1個(gè)最少非零系數(shù)x來(lái)表示y,。這個(gè)問(wèn)題常常使用求解一個(gè)優(yōu)化問(wèn)題,,即0范數(shù)問(wèn)題:
minx0s.t.y=Dx(2)
其中,0代表0范式,,它的作用在于標(biāo)記非零項(xiàng)個(gè)數(shù),。
更進(jìn)一步,這個(gè)優(yōu)化問(wèn)題還可以等價(jià)于一個(gè)在1范式情況下的凸優(yōu)化問(wèn)題,,模型如下:
minx1s.t.y=Dx(3)
其中,,1代表1范式。
有許多算法可以求解這個(gè)優(yōu)化問(wèn)題,,例如梯度投影算法[11],、貪婪算法[12]等。這里,,本文使用的求解算法為正交匹配追蹤(Orthogonal Match Pursuit,,OMP)算法[13]。
2稀疏信號(hào)處理
根據(jù)稀疏表示原理,,將原始脈沖信號(hào)在超完備字典下進(jìn)行稀疏分解,。在這一過(guò)程中,選擇合適的超完備字典是非常重要的過(guò)程,,因?yàn)檫@一過(guò)程不僅影響信號(hào)稀疏表示的稀疏性,,還影響有用信號(hào)特征的選擇。針對(duì)密集多徑的信號(hào)特點(diǎn),,標(biāo)準(zhǔn)的多分辨字典是一種較為有效的選擇,,例如基于小波理論的字典。這些字典已經(jīng)在已有的文獻(xiàn)中用來(lái)處理自然場(chǎng)景圖像,,并且有較好的表現(xiàn)[14],。由小波函數(shù)ψ(t)及其擴(kuò)展函數(shù)φ(t)經(jīng)過(guò)平移伸縮以及尺度縮放,最終形成小波冗余字典:
ψj,k(t)=2-j/2ψ(2-jt-k)
φj,k(t)=2-j/2φ(2-jt-k) (4)
這里使用Symletes小波字典作為過(guò)完備冗余字典[15],。
依據(jù)公式(1)和(3),,并且基于選定的過(guò)完備冗余字典,可以獲取稀疏表示系數(shù)來(lái)重新表示原始的接收信號(hào),,也就是說(shuō),,利用OMP算法和小波字典,接收信號(hào)可以被分解為稀疏系數(shù),。在這一過(guò)程中,,原始的接收信號(hào)被轉(zhuǎn)換為稀疏分解系數(shù),而這些系數(shù)保留了原始信號(hào)特征成為進(jìn)一步處理的對(duì)象,。
通常,,字典包含的原子數(shù)目大于接收信號(hào)數(shù)目,為了避免高維系數(shù)集的出現(xiàn),,有必要利用特征提取進(jìn)行降維,。本文使用主成分分析算法進(jìn)行降維。
假設(shè)輸入的稀疏系數(shù)為p=[p1,...,pn],,想轉(zhuǎn)換這些系數(shù)到一個(gè)更低的維度向量pV=[p1,...,pv],,這一問(wèn)題可以被表示為:
pV=E(p-μp)(5)
其中,pV是主成分分析系數(shù),,它可以以一種低維形式表示原始的稀疏系數(shù)向量,。E包含協(xié)方差矩陣p中v個(gè)最大的特征值所對(duì)應(yīng)的向量,而μp表示樣本均值,。
隨后,,利用這些經(jīng)過(guò)稀疏表示以及主成分分析的系數(shù)集合,提取三個(gè)量化特征用以區(qū)分信號(hào)的不同特征,,第一個(gè)特征為能量集中度:
3基于假設(shè)檢驗(yàn)的信號(hào)檢測(cè)
二元假設(shè)檢驗(yàn)是信號(hào)檢測(cè)中常用的策略,,本文根據(jù)信號(hào)統(tǒng)計(jì)特性構(gòu)建相對(duì)應(yīng)的假設(shè)檢驗(yàn)形式。二元假設(shè)檢驗(yàn)是通過(guò)測(cè)量一組給定的假設(shè)狀態(tài)來(lái)判定是否為所需信號(hào):
Ho: 零假設(shè)
H1: 其他
存在兩種類(lèi)型的錯(cuò)誤:虛假警報(bào)PFA(當(dāng)H1被確定,,但真實(shí)值為Ho時(shí))以及漏檢(當(dāng)Ho被確定,,但真實(shí)值為H1時(shí)),這里常用檢測(cè)概率PD表示漏檢的補(bǔ)集,。
對(duì)于虛假警報(bào)PFA和檢測(cè)概率PD,,可以利用Neyman-Pearson定理[16]獲取。當(dāng)信號(hào)被接收者獲取后,,通過(guò)一些處理,,其統(tǒng)計(jì)信號(hào)可以表示為:
f(τ)=(τ)+σ2(10)
其中,σ2是噪聲方差,。
這種情況下,,假設(shè)f(τ)是服從高斯分布的統(tǒng)計(jì)特征,參考特征為f′(τ),,從而得:
H0:f(τ)-f′(τ)=σ2
H1:f(τ)-f′(τ)=S+σ2 (11)
其中,,S是區(qū)分與σ2的變量。
然后根據(jù)變量的統(tǒng)計(jì)特性分析和相應(yīng)的統(tǒng)計(jì)信號(hào)檢測(cè),,可以計(jì)算出目標(biāo)特征的概率密度函數(shù),。通過(guò)預(yù)先設(shè)置虛警概率,,可以計(jì)算獲得檢測(cè)概率和實(shí)際的虛警概率。這種條件下概率密度函數(shù)為:
其中ξ表示為PFA的閾值,。
根據(jù)NeymanPearson定理,,計(jì)算實(shí)際的虛警概率和檢測(cè)概率分別為:
4數(shù)值仿真
在低復(fù)雜度非相干檢測(cè)框架內(nèi),需要將信號(hào)調(diào)制方式考慮在內(nèi),。由于非相干檢測(cè)中不對(duì)信道沖激響應(yīng)進(jìn)行估計(jì),,相位調(diào)制方式將不適用,因而不采用移相鍵控(PSK)等相位調(diào)制,。本文采用調(diào)時(shí)脈沖位置調(diào)制(THPPM),,調(diào)制通過(guò)跳時(shí)機(jī)制實(shí)現(xiàn)時(shí)間多址接入,其調(diào)制信號(hào)可表示為:
其中Tb表示單比特持續(xù)時(shí)間,,Tf為幀時(shí)間長(zhǎng)度,,zi 為偽隨機(jī)調(diào)時(shí)序列,δ為符號(hào)中比特間隔,。
本文仿真采用IEEE 802.15.3a Task Group (TG)規(guī)定的SV多徑信道模型,。圖1所示為典型視距傳輸距離為1~4 m通信場(chǎng)景下密集多徑信道沖激響應(yīng)。
圖2表示在假設(shè)檢驗(yàn)情況下稀疏信號(hào)處理過(guò)程,,H0下僅包含加性白噪聲,,而H1下同時(shí)包含噪聲和多徑接收信號(hào)。從圖中可以看出,,兩類(lèi)信號(hào)在實(shí)域采集后的原始信號(hào)非常接近,,而經(jīng)過(guò)稀疏表示處理之后特征信息已經(jīng)表現(xiàn)出來(lái),但是特征空間相對(duì)較大,,經(jīng)過(guò)主成分分析后(PCA),,相關(guān)的參數(shù)空間明顯變少,而且特征信息依舊保留,。因此,,通過(guò)稀疏信號(hào)處理可以表征出這兩類(lèi)信號(hào)的不同,從而為信號(hào)的檢測(cè)提供了特征信息,。
圖3參考方法不同角度信號(hào)的功率譜圖圖3表示在經(jīng)過(guò)假設(shè)檢驗(yàn)后,,本文所提方法與傳統(tǒng)的能量檢測(cè)方法性能相對(duì)比。實(shí)驗(yàn)分別從信噪比(SNR)為5 dB,、15 dB,、30 dB由低到高開(kāi)展。從圖中可以清楚地看到,,隨著信噪比的升高,,兩種方案的檢測(cè)性能也有所提升,而且,,在對(duì)虛警概率PFA的限制條件逐步放寬的前提下,,檢測(cè)性能PD逐漸趨近于1,,這也是NP檢測(cè)的特點(diǎn)所在,即在給定虛警概率的條件下,,檢測(cè)概率達(dá)到最好,。從圖中可以看出,,無(wú)論是在哪種信噪比條件下,,所提的基于稀疏信號(hào)處理的信號(hào)檢測(cè)方法都比傳統(tǒng)的能量檢測(cè)方法性能優(yōu)秀,這也說(shuō)明了本文所提方法的有效性,。
5結(jié)論
本文對(duì)密集多徑信道下非相干信號(hào)檢測(cè)方法進(jìn)行了研究,,為進(jìn)一步提高非相干信號(hào)檢測(cè)的性能,提出了一種基于稀疏表示的稀疏信號(hào)處理方案,。本文構(gòu)建了以稀疏表示為基礎(chǔ)的特征信號(hào),,將假設(shè)檢測(cè)方案作為最終的信號(hào)檢測(cè)判決。仿真表明所提出的方法具有可行性,,其檢測(cè)性能要優(yōu)于傳統(tǒng)的能量檢測(cè)方案,。
參考文獻(xiàn)
[1] Yang Liuqing, GIANNAKIS G B. Ultrawideband communications: an idea whose time has come [J]. IEEE Signal Processing Magazine, 2004, 21(6): 26-54.
?。?] CASSIOLI D, WIN M Z, VATALARO F, et al. Low complexity rake receivers in ultrawideband channels [J]. IEEE Transactions on Wireless Communications,2007,6(4): 1265-1275.
?。?] FRANZ S, MITRA U. Generalized UWB transmitted reference systems [J]. IEEE Journal on Selected Areas in Communications, 2006, 24(4): 780-786.
[4] GERALD J B, FERNANDES J R, CAEIRO P. Ultrawideband noncoherent transceivers[R]. Research Report, INESCID, Lisboa, 2010.
?。?] BENAMOR I, TALL N, DEHAESE N, et al. A fully differential 7.28.5 GHz LNA for a self synchronized and dutycycled UWB OOK receiver[C]. 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), IEEE, 2015: 1-5.
?。?] 陳長(zhǎng)興, 符輝, 牛德智,等. 基于雙門(mén)限能量檢測(cè)的協(xié)作頻譜感知算法[J]. 系統(tǒng)工程與電子技術(shù), 2013, 35(8):1742-1746.
[7] 張學(xué)軍, 嚴(yán)金童, 田峰,等. 基于差分能量檢測(cè)的雙門(mén)限協(xié)作頻譜感知算法[J]. 儀器儀表學(xué)報(bào), 2014, 35(6):1325-1330.
?。?] 張鳳. 稀疏表示理論的研究及其在圖像去噪中的應(yīng)用[D]. 西安:西安電子科技大學(xué), 2014.
?。?] 崔嵩. 基于稀疏信號(hào)的學(xué)習(xí)字典算法及其應(yīng)用[D]. 北京:北京工業(yè)大學(xué), 2014.
[10] GUHA T, WARD R. Learning sparse representations for human action recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(8): 1576-1588.
?。?1] FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems [J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.
?。?2] MALLAT S, Zhang Zhifeng. Matching pursuits with timefrequency dictionaries [J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
[13] TROPP J, GILBERT A. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
?。?4] STARCK J L, ELAD M, DONOHO D L. Image decomposition via the combination of sparse representations and a variational approach [J]. IEEE Transactions on Image Processing, 2005, 14(10): 1570-1582.
?。?5] CHEN S S, DONOHO D, SAUNDERS M. Atomic decomposition by basis pursuit [J]. Society for Industrial and Applied Mathematics Review, 1998, 20(1): 33-61.
[16] KAY S M. Fundamentals of Statistical Signal Processing: Detection Theory Volume Ⅱ[M]. Prentice Hall, 2011.