《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 面向多說話人分離的深度學習麥克風陣列語音增強
面向多說話人分離的深度學習麥克風陣列語音增強
2022年電子技術應用第5期
張家揚1,,2,,童 峰1,,2,3,,陳東升1,,2,3,,黃惠祥1,,2
1.廈門大學 水聲通信與海洋信息技術教育部重點實驗室,福建 廈門361005,; 2.廈門大學 海洋與地球學院,,福建 廈門361005;3.廈門大學深圳研究院,,廣東 深圳518000
摘要: 隨著近年來人機語音交互場景不斷增加,,利用麥克風陣列語音增強提高語音質量成為研究熱點之一。與環(huán)境噪聲不同,,多說話人分離場景下干擾說話人語音與目標說話人同為語音信號,,呈現(xiàn)類似的時、頻特性,,對傳統(tǒng)麥克風陣列語音增強技術提出更高的挑戰(zhàn),。針對多說話人分離場景,基于深度學習網絡構建麥陣空間響應代價函數(shù)并進行優(yōu)化,,通過深度學習模型訓練設計麥克風陣列期望空間傳輸特性,,從而通過改善波束指向性能提高分離效果。仿真和實驗結果表明,,該方法有效提高了多說話人分離性能,。
中圖分類號: TN912.3
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.212404
中文引用格式: 張家揚,童峰,,陳東升,,等. 面向多說話人分離的深度學習麥克風陣列語音增強[J].電子技術應用,2022,,48(5):31-36.
英文引用格式: Zhang Jiayang,,Tong Feng,Chen Dongsheng,,et al. Deep learning microphone array speech enhancement for multiple speaker separation[J]. Application of Electronic Technique,,2022,48(5):31-36.
Deep learning microphone array speech enhancement for multiple speaker separation
Zhang Jiayang1,,2,,Tong Feng1,2,,3,,Chen Dongsheng1,,2,3,,Huang Huixiang1,,2
1.Key Laboratory of Underwater Acoustic Communication and Marine Information Technology Ministry of Education, Xiamen University,,Xiamen 361005,,China; 2.College of Ocean and Earth Sciences,,Xiamen Univercity,Xiamen 361005,,China,; 3.Shenzhen Research Institute of Xiamen Univercity,Shenzhen 518000,,China
Abstract: With the increase of human-computer voice interaction scenes in recent years, using microphone array speech enhancement to improve speech quality has become one of the research hotspots. Different from the ambient noise, the interfering speaker′s speech and the target speaker are the same speech signal in the multiple speaker separation scene, showing similar time-frequency characteristics, which poses a higher challenge to the traditional microphone array speech enhancement technology. For the multiple speaker separation scenario, the spatial response cost function of microphone array is constructed and optimized based on deep learning network. The desired spatial transmission characteristics of microphone array are designed through deep learning model training, so as to improve the separation effect by improving the beamforming performance. Simulation and experimental results show that this method effectively improves the performance of multiple speaker separation.
Key words : deep learning,;microphone array;beamforming,;LSTM

0 引言

    隨著人與機器之間的語言交互逐漸頻繁,,更需要考慮噪聲、混響和其他說話人的干擾等引起語音信號質量下降的因素對語音識別造成的影響,,語音增強技術[1]可以有效地從受干擾的信號中提取純凈的語音,,而麥克風陣列比起單個麥克風可以獲取更多的語音信息和時空特征,因而麥克風陣列語音增強技術被廣泛應用在智能家居,、車載系統(tǒng)和音(視)頻會議等領域,。

    麥克風陣列對信號進行空間濾波,可以增強期望方向上的信號并抑制方向性噪聲,,實現(xiàn)語音增強,。傳統(tǒng)麥陣語音增強算法;如形成固定波束的濾波累加波束形成算法(Filter-and-Sum Beamforming,,F(xiàn)SB)[2],,通過一定長度的濾波器系數(shù)對多通道信號進行濾波累加,實現(xiàn)了頻率無關的空間響應特性,,具有低復雜度,、硬件容易實現(xiàn)等優(yōu)點,但是對于具有方向性的噪聲效果不佳,。




本文詳細內容請下載:http://forexkbc.com/resource/share/2000004272,。




作者信息:

張家揚1,2,,童  峰1,,2,,3,陳東升1,,2,,3,黃惠祥1,,2

(1.廈門大學 水聲通信與海洋信息技術教育部重點實驗室,,福建 廈門361005;

2.廈門大學 海洋與地球學院,,福建 廈門361005,;3.廈門大學深圳研究院,廣東 深圳518000)




wd.jpg

此內容為AET網站原創(chuàng),,未經授權禁止轉載,。