基于老化特征化提取進(jìn)行時(shí)序分析的解決方案
2022年電子技術(shù)應(yīng)用第8期
陳 寒,,宋存彪,,吳韋忠
中興微電子技術(shù)有限公司 后端設(shè)計(jì)部FoundationIP,上海200120
摘要: 基于Cadence的Liberate + Tempus解決方案,,采用一種先進(jìn)的標(biāo)準(zhǔn)單元老化特征化的方法,,同時(shí)考慮了偏置溫度不穩(wěn)定性(Bias Temperatrure Instability,BTI)和熱載流子注入(Hot Carrier Injection,,HCI)老化效應(yīng),得到標(biāo)準(zhǔn)單元老化時(shí)序庫(kù),,用于Tempus進(jìn)行考慮老化的靜態(tài)時(shí)序分析(Aging-aware Static Timing Analysis,,Aging-aware STA)。產(chǎn)生一套先進(jìn)的標(biāo)準(zhǔn)單元老化時(shí)序庫(kù),,能夠針對(duì)不同標(biāo)準(zhǔn)單元不同傳輸路徑,,表征一定范圍的老化應(yīng)力條件的時(shí)序特征,改善了傳統(tǒng)添加全局時(shí)序減免值導(dǎo)致電路PPA(Performance/Power/Area)難以收斂的問(wèn)題,,同時(shí)只需要調(diào)用一套標(biāo)準(zhǔn)單元庫(kù)也使STA更加簡(jiǎn)潔易操作,。
中圖分類(lèi)號(hào): TN402文獻(xiàn)標(biāo)識(shí)碼: ADOI: 10.16157/j.issn.0258-7998.229804中文引用格式: 陳寒,宋存彪,,吳韋忠. 基于老化特征化提取進(jìn)行時(shí)序分析的解決方案[J].電子技術(shù)應(yīng)用,,2022,48(8):51-54,,59.英文引用格式: Chen Han,,Song Cunbiao,Wu Weizhong. Solution to aging timing analysis based on aging characterization[J]. App- lication of Electronic Technique,,2022,,48(8):51-54,59.
Solution to aging timing analysis based on aging characterization
Chen Han,,Song Cunbiao,,Wu Weizhong
SANECHIPS Technology Co.,Ltd.,,Backend Design Dept. FoundationIP,,Shanghai 200120,China
Abstract: In this paper, an aging standard cell library considering both BTI(Bias Temperatrure Instability) and HCI(Hot Carrier Injection) is obtained by an advanced characterization method based on Cadence Liberate + Tempus solution, which can be used by Tempus to perform Aging-aware Static Timing Analysis(Aging-aware STA). Compared to setting a flat derate to the circuit, the aging library indicates the timing information of a certain range of aging stress conditions for different arcs of different cells, which optimizes PPA(Performance/Power/Area)of the circuit. In addition, only one library is invoked making STA simpler and easier to operate.
Key words : aging library,;Cadence Liberate,;aging aware STA;Tempus
0 引言
近年來(lái),,CMOS技術(shù)不斷發(fā)展至納米級(jí)先進(jìn)工藝,,帶來(lái)的可靠性問(wèn)題也越來(lái)越突出,眾多老化效應(yīng),,例如偏置溫度不穩(wěn)定性(Bias Temperatrure Instability,,BTI),、熱載流子注入(Hot Carrier Injection,HCI),,成為提高超大規(guī)模集成(Very Large Scale Integrated,,VLSI)電路可靠性的主要挑戰(zhàn)[1-3] 。BTI效應(yīng)是由于在氧化層界面的不飽和Si鍵在H2退火過(guò)程中形成Si-H鍵,。當(dāng)器件的柵極給到足夠的電壓產(chǎn)生持續(xù)的電場(chǎng)應(yīng)力時(shí)(對(duì)于NMOS是高電平-VDD,,對(duì)于PMOS是低電平-VSS),這些Si-H鍵很容易斷裂,,H原子變成游離態(tài)并留下陷阱,。隨著更高的電壓和更高的溫度,陷阱態(tài)的生成速度加快,,導(dǎo)致閾值電壓(Vth)增加,、漏端電流(Ids)減少以及溝道中電子遷移率下降[4-5] 。在先進(jìn)工藝中,,負(fù)柵極偏置(Negative Bias Temperatrure Instability,,NBTI)的PMOS會(huì)產(chǎn)生比正柵極偏置(Positive Bias Temperatrure Instability,PBTI)的NMOS更嚴(yán)重的衰退,。HCI效應(yīng)通常發(fā)生在數(shù)字電路中信號(hào)轉(zhuǎn)換時(shí),,器件源漏極和柵極施加高電壓時(shí),溝道中具有源極指向漏極的高橫向電場(chǎng),,溝道中的空穴在橫向電場(chǎng)加速下,,會(huì)與晶格碰撞發(fā)生散射或電離,部分載流子能在垂直于界面方向獲得足夠的能量而幸運(yùn)地注入到柵氧化層中形成界面態(tài)或被陷阱捕獲,,極少部分會(huì)到達(dá)柵極形成柵電流,,在小尺寸器件中,溝道中的高能載流子注入造成器件損傷是熱載流子效應(yīng)導(dǎo)致器件性能退化的主要原因,。這些注入載流子影響器件的Vth和跨導(dǎo)(Gm),,導(dǎo)致Ids的衰退[6] ??紤]到老化效應(yīng)的影響,,電路設(shè)計(jì)人員通常會(huì)在時(shí)序路徑上加上一定時(shí)序減免值以保證電路能在經(jīng)歷老化后也可以在不同條件和特定頻率下工作[7] 。
本文詳細(xì)內(nèi)容請(qǐng)下載:http://forexkbc.com/resource/share/2000004650 ,。
作者信息:
陳 寒,,宋存彪,吳韋忠
(中興微電子技術(shù)有限公司 后端設(shè)計(jì)部FoundationIP,,上海200120)
原創(chuàng)聲明: 此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。