《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 電源技術(shù) > 設(shè)計(jì)應(yīng)用 > 基于ESN的鋰電池SOC評估方法與仿真研究
基于ESN的鋰電池SOC評估方法與仿真研究
2023年電子技術(shù)應(yīng)用第1期
杜廣波1,,蔡茂2,張鑫2,,范興明2,,程江華1
1.中國聯(lián)合工程有限公司,,浙江 杭州 310052,;2.桂林電子科技大學(xué) 電氣工程及其自動(dòng)化系,廣西 桂林541004
摘要: 以新能源車載鋰電池為研究對象,,建立基于回聲狀態(tài)網(wǎng)絡(luò)(ESN)預(yù)測鋰電池的荷電狀態(tài)(SOC)評估模型,。采用交叉驗(yàn)證方法優(yōu)選回聲狀態(tài)網(wǎng)絡(luò)參數(shù),以此解決網(wǎng)絡(luò)模型的參數(shù)選擇困難,。通過帶遺忘因子的遞歸最小二乘法訓(xùn)練建立的回聲狀態(tài)網(wǎng)絡(luò)模型,,實(shí)時(shí)更新輸出權(quán)值矩陣以此提高網(wǎng)絡(luò)的適應(yīng)性和精度。通過模型仿真分析驗(yàn)證了預(yù)測算法的可行性,,進(jìn)一步對比分析了所建立的ESN預(yù)測模型與BP神經(jīng)網(wǎng)絡(luò)算法,、徑向基(RBF)網(wǎng)絡(luò)算法在UDDS、US06和NYCC工況條件下的鋰電池SOC評估預(yù)測效果,,結(jié)果表明所建立的回聲狀態(tài)網(wǎng)絡(luò)模型方法用于鋰電池SOC評估預(yù)測的性能和效果優(yōu)于BP算法和RBF算法,,具有較好的應(yīng)用前景,可以為鋰電池SOC長期長效預(yù)測評估提供參考,。
中圖分類號:TP305
文獻(xiàn)標(biāo)志碼:A
DOI: 10.16157/j.issn.0258-7998.223057
中文引用格式: 杜廣波,,蔡茂,張鑫,,等. 基于ESN的鋰電池SOC評估方法與仿真研究[J]. 電子技術(shù)應(yīng)用,,2023,,49(1):45-51.
英文引用格式: Du Guangbo,,Cai Mao,Zhang Xin,,et al. Research on SOC evaluation method and simulation of lithiumbattery based on echo state network[J]. Application of Electronic Technique,,2023,49(1):45-51.
Research on SOC evaluation method and simulation of lithiumbattery based on echo state network
Du Guangbo1,,Cai Mao2,,Zhang Xin2,F(xiàn)an Xingming2,,Cheng Jianghua1
1.China United Engineering Corporation Limited,, Hangzhou 310052, China,; 2.Dep.of Electrical Engineering & Automation,, Guilin University of Electronic and Technology ,Guilin 541004,, China
Abstract: Taking lithium battery of new energy vehicles as the research object,an echo state network (ESN) model is established to predict the state of charge (SOC) of the vehicle's lithium battery. The cross-validation method is used to optimize the parameters of the ESN to solve difficulty to select arameters of the model. The echo state network is trained by recursive least squares method with forgetting factors to calculate the output weight matrix so as to improve the adaptability and accuracy of the network.The feasibility of the prediction algorithm is further analyzed and verified by the model simulation. The research further analyzes and compares the predicted SOC of the established ESN model, the BP neural network algorithm and radial basis function (RBF) network algorithm under UDDS, US06 and NYCC. The research results show that the established echo state network model is superior to the BP algorithm and RBF algorithm in estimating the performance and effect of lithium-ion battery SOC evaluation. Using ESN model to predict SOC has a good application prospect and can provide a reference for long-term and effective SOC prediction of the lithium battery.
Key words : lithium battery,;state of charge;echo state network,;parameters optimization and selection,;cross validation

0 引言

    新能源電動(dòng)汽車鋰電池因具有無污染,、續(xù)航能力強(qiáng)以及可多次循環(huán)使用等優(yōu)點(diǎn)被廣泛應(yīng)用,鋰電池荷電狀態(tài)SOC的預(yù)測研究是新能源汽車領(lǐng)域的關(guān)鍵技術(shù),。SOC反映了鋰電池的剩余可用電量[1-2],,準(zhǔn)確預(yù)測SOC對于研究新能源電動(dòng)汽車的續(xù)航里程、鋰電池合理充放電以及電池健康管理等可提供可靠依據(jù)[3],。

    鋰電池內(nèi)部化學(xué)反應(yīng)復(fù)雜,,SOC的變化受溫度、電池循環(huán)使用次數(shù),、充放電倍率和老化等多種因素影響,,致使SOC預(yù)測困難[4]。常用預(yù)測SOC的方法主要有:安時(shí)積分法,、開路電壓法,、內(nèi)阻法和電池模型法。由于這些方法存在誤差累積較多[5-6],、應(yīng)用狀態(tài)受限[7-8],、無法直接檢測實(shí)際SOC[9]、參數(shù)辨識困難[10-13]等不足,,其應(yīng)用場合受到一定限制,。

    采用交叉驗(yàn)證法對回聲狀態(tài)網(wǎng)絡(luò)(ESN)的儲備池規(guī)模N、譜半徑SR,、輸入縮放IS和輸入位移IF進(jìn)行尋優(yōu),,并采用帶遺忘因子的遞歸最小二乘法實(shí)時(shí)調(diào)整網(wǎng)絡(luò)輸出權(quán)值矩陣。為驗(yàn)證ESN算法的可行性和優(yōu)越性,,將ESN算法在UDDS工況下與BP算法和RBF算法以不同的訓(xùn)練集和測試集進(jìn)行仿真對比,,進(jìn)而將以上3種算法在UDDS、US06和NYCC工況下進(jìn)行對比分析,。




本文詳細(xì)內(nèi)容請下載:http://forexkbc.com/resource/share/2000005075,。




作者信息:

杜廣波1,蔡茂2,,張鑫2,,范興明2,程江華1

(1.中國聯(lián)合工程有限公司,,浙江 杭州 310052,;2.桂林電子科技大學(xué) 電氣工程及其自動(dòng)化系,廣西 桂林541004)

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。