《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 面向分類任務的隱私保護協(xié)作學習技術
面向分類任務的隱私保護協(xié)作學習技術
網絡安全與數據治理 2023年第5期
黎蘭蘭,張信明
(中國科學技術大學計算機學院,,安徽合肥230026)
摘要: 隨著相關法律法規(guī)的發(fā)布和人們隱私意識的覺醒,,隱私保護要求不斷提高,。針對分類任務場景,,提出了一種隱私性與效用性并重的面向分類任務的隱私保護協(xié)作技術(PCTC)。在隱私安全方面,,將同態(tài)加密和差分隱私相結合,,并設計了一種安全聚合機制,,實現(xiàn)更加健壯的隱私保護,;在效用性方面,,引入信息熵的計算因子對標簽可信度進行度量,降低標注噪聲對模型性能的影響,。最后對所提出的方案進行了安全性分析,并在公開數據集上進行了實驗驗證,。結果表明PCTC在保證數據隱私安全的同時大幅度提升了模型性能,,具有較為廣闊的應用前景。
中圖分類號:TP393
文獻標識碼:A
DOI:10.19358/j.issn.2097-1788.2023.05.007
引用格式:黎蘭蘭,張信明.面向分類任務的隱私保護協(xié)作學習技術[J].網絡安全與數據治理,,2023,,42(5):36-43.
Privacy-preserving collaborative learning technology for classification
Li Lanlan, Zhang Xinming
(School of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, China)
Abstract: With the release of relevant laws and regulations and the awakening of people’s privacy awareness, the requirements for privacy protection are constantly increasing. Aiming at the scenario of classification, this paper proposes a Privacypreserving Collaborative Learning Technology for Classification (PCTC) that emphasizes both privacy and utility. In terms of privacy, homomorphic encryption and differential privacy are combined and a secure aggregation mechanism is designed to achieve more robust privacy protection. In terms of utility, the calculation factor of information entropy is introduced to measure the credibility of labels, which can reduce the impact of labeling noise on model performance. Finally, the security analysis of the proposed scheme is carried out, and the experiments are implemented on public datasets. The results show that PCTC significantly improves model performance while ensuring privacy and security of the data, and has broad application prospects.
Key words : privacy preservation; data labeling; classification task; homomorphic encryption; differential privacy

0     引言

近年來,隨著數據產生速度和計算機算力的持續(xù)提升,,機器學習在目標識別,、語音識別、自然語言處理和對象檢測等許多領域都取得了巨大突破,。新興的機器學習尤其是深度學習更是為產業(yè)的升級和變革提供了推動力量,,其中包括智慧農業(yè),、智慧醫(yī)療等行業(yè)。良好的機器學習框架特別是有監(jiān)督的人工神經網絡往往需要大量的標注數據,,然而現(xiàn)實中任何單一實體都不可能總是擁有全部標注數據,,多方協(xié)作學習是解決這一問題的有效方案。



本文詳細內容請下載:http://forexkbc.com/resource/share/2000005332




作者信息:

黎蘭蘭,張信明

(中國科學技術大學計算機學院,,安徽合肥230026) 


微信圖片_20210517164139.jpg

此內容為AET網站原創(chuàng),,未經授權禁止轉載。