《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 電子元件 > 設(shè)計(jì)應(yīng)用 > 使用Xcelium Machine Learning技術(shù)加速驗(yàn)證覆蓋率收斂
使用Xcelium Machine Learning技術(shù)加速驗(yàn)證覆蓋率收斂
2023年電子技術(shù)應(yīng)用第8期
植玉1,,馬業(yè)欣1,徐嶸2
(1.深圳市中興微電子技術(shù)有限公司,,廣東 深圳 518054,;2.楷登企業(yè)管理(上海)有限公司深圳分公司,,廣東 深圳 518000)
摘要: 隨著設(shè)計(jì)越來越復(fù)雜,受約束的隨機(jī)化驗(yàn)證方法已成為驗(yàn)證的主流方法,。一般地,,驗(yàn)證激勵(lì)做到不違反spec描述條件下盡量隨機(jī),這樣驗(yàn)證能跑到的空間才更充分,。但是,,這給功能覆蓋率收斂帶來極大挑戰(zhàn),為解決這一難題,,Cadence率先推出了仿真器的機(jī)器學(xué)習(xí)功能——Xcelium Machine Learning,,采用機(jī)器學(xué)習(xí)技術(shù)讓功能覆蓋率快速收斂,大大提高驗(yàn)證仿真效率,。介紹了Xcelium Machine Learning的使用流程,,并給出在相同模擬(simulation)驗(yàn)證環(huán)境下應(yīng)用Machine Learning前后情況對(duì)比。最后Machine Learning在模擬(simulation)驗(yàn)證中的應(yīng)用前景進(jìn)行了展望,。
中圖分類號(hào):TN402 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.239805
中文引用格式: 植玉,,馬業(yè)欣,徐嶸. 使用Xcelium Machine Learning技術(shù)加速驗(yàn)證覆蓋率收斂[J]. 電子技術(shù)應(yīng)用,,2023,,49(8):19-23.
英文引用格式: Zhi Yu,Ma Yexin,,Xu Rong. Accelerating verification coverage convergence using Xcelium Machine Learning technology[J]. Application of Electronic Technique,,2023,,49(8):19-23.
Accelerating verification coverage convergence using Xcelium Machine Learning technology
Zhi Yu1,Ma Yexin1,,Xu Rong2
(1.Shenzhen Sanechips Technology Co.,, Ltd., Shenzhen 518054,,China,;2.Cadence Design Systems, Shenzhen 518000,,China)
Abstract: As designs become more complex, constrained randomized verification methods have become the mainstream method for verification. Generally, the verification incentive should be as random as possible without violating the spec description condition, so that the space that the verification can cover is more sufficient. However, this brings great challenges to the convergence of functional coverage. To solve this problem, Cadence pioneered the machine learning function of the simulator - Xcelium Machine Learning, which uses machine learning technology to quickly converge the functional coverage and greatly improve the efficiency of verification simulation. This article mainly introduces the process of using Xcelium Machine Learning and gives a comparison before and after using machine learning in the same simulation verification environment. Finally, the application prospect of machine learning in simulation verification is prospected.
Key words : random test,;constrained random;functional coverage,;machine learning,;simulation

0 引言

覆蓋率驅(qū)動(dòng)的隨機(jī)測(cè)試生成方法是目前隨機(jī)測(cè)試生成技術(shù)研究的熱點(diǎn),其目標(biāo)是為了提高驗(yàn)證的自動(dòng)化程度,,加快驗(yàn)證收斂過程,提高驗(yàn)證效率,,即通過覆蓋率指導(dǎo)測(cè)試向量生成,,進(jìn)一步減少重復(fù)測(cè)試向量,加速功能驗(yàn)證收斂[1],。

如圖1所示,,通常地,為加快覆蓋率收斂,,驗(yàn)證人員根據(jù)覆蓋率分析結(jié)果,,找到相關(guān)隨機(jī)點(diǎn)乃至隨機(jī)變量進(jìn)行分析,然后合理地調(diào)整隨機(jī)變量的相應(yīng)約束,,反復(fù)迭代以達(dá)成覆蓋率收斂的目標(biāo),。這樣做,存在三個(gè)問題:(1)浪費(fèi)人力,,重復(fù)的事情本應(yīng)留給程序去做而人來做了,;(2)陷入驗(yàn)證方法學(xué)應(yīng)用誤區(qū),驗(yàn)證方法的天平嚴(yán)重偏向了定向驗(yàn)證,,隨機(jī)激勵(lì)隨機(jī)力度不夠,;(3)增加漏測(cè)風(fēng)險(xiǎn),壓縮了隨機(jī)空間,,可能會(huì)導(dǎo)致存在缺陷的空間未能隨機(jī)到而錯(cuò)過發(fā)現(xiàn)缺陷的機(jī)會(huì),。



本文詳細(xì)內(nèi)容請(qǐng)下載:http://forexkbc.com/resource/share/2000005480




作者信息:

植玉1,馬業(yè)欣1,,徐嶸2

(1.深圳市中興微電子技術(shù)有限公司,,廣東 深圳 518054,;2.楷登企業(yè)管理(上海)有限公司深圳分公司,廣東 深圳 518000)

微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。