基于深度學(xué)習(xí)的無監(jiān)督領(lǐng)域自適應(yīng)語義分割算法綜述
電子技術(shù)應(yīng)用
應(yīng)俊杰1,,2,,樓陸飛1,2,,辛宇1,2
1.寧波大學(xué) 信息科學(xué)與工程學(xué)院, 浙江 寧波315211,;2.浙江省移動網(wǎng)應(yīng)用技術(shù)重點實驗室,浙江 寧波315211
摘要: 隨著現(xiàn)代生活逐步智能化,,越來越多的應(yīng)用需要從圖像中推斷相應(yīng)的語義信息再進行后續(xù)的處理,,如虛擬現(xiàn)實、自動駕駛和視頻監(jiān)控等應(yīng)用,。目前的語義分割模型利用大量標(biāo)注數(shù)據(jù)進行有監(jiān)督訓(xùn)練能達到理想的性能,,但模型對與訓(xùn)練數(shù)據(jù)不同分布的數(shù)據(jù)進行推理時,其性能嚴(yán)重下降,。這意味著一旦應(yīng)用場景發(fā)生變化,,就需對新場景的數(shù)據(jù)進行標(biāo)注,。模型重新利用新數(shù)據(jù)進行訓(xùn)練,才能達到正常的性能,。這無疑是耗時的,、代價昂貴的。為此,,領(lǐng)域自適應(yīng)語義分割算法提供了解決模型在分布不一致數(shù)據(jù)上語義分割性能下降問題的思路,。總結(jié)了領(lǐng)域自適應(yīng)語義分割算法的前沿進展,,并對未來研究方向進行展望,。
中圖分類號:TP391.4 文獻標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.234261
中文引用格式: 應(yīng)俊杰,樓陸飛,,辛宇. 基于深度學(xué)習(xí)的無監(jiān)督領(lǐng)域自適應(yīng)語義分割算法綜述[J]. 電子技術(shù)應(yīng)用,,2024,50(1):1-9.
英文引用格式: Ying Junjie,,Lou Lufei,,Xin Yu. A survey of unsupervised domain adaptive semantic segmentation algorithms based on deep learning[J]. Application of Electronic Technique,2024,,50(1):1-9.
中文引用格式: 應(yīng)俊杰,樓陸飛,,辛宇. 基于深度學(xué)習(xí)的無監(jiān)督領(lǐng)域自適應(yīng)語義分割算法綜述[J]. 電子技術(shù)應(yīng)用,,2024,50(1):1-9.
英文引用格式: Ying Junjie,,Lou Lufei,,Xin Yu. A survey of unsupervised domain adaptive semantic segmentation algorithms based on deep learning[J]. Application of Electronic Technique,2024,,50(1):1-9.
A survey of unsupervised domain adaptive semantic segmentation algorithms based on deep learning
Ying Junjie1,,2,Lou Lufei1,,2,,Xin Yu1,2
1.College of Information Science and Engineering,, Ningbo University,, Ningbo 315211, China,; 2.Key Laboratory of Mobile Network Application Technology of Zhejiang Province,, Ningbo 315211, China
Abstract: As modern life becomes increasingly intelligent, more and more applications require inferring semantic information from images before proceeding with further processing, such as virtual reality, autonomous driving, and video surveillance. Current semantic segmentation models achieve ideal performance through supervised training with a large amount of annotated data, but their performance severely deteriorates when inferring on data with a distribution different from the training data. This means that once the application scenario changes, new data needs to be annotated and the model needs to be retrained with the new data in order to achieve normal performance. This is undoubtedly time-consuming and expensive. Therefore, domain adaptive semantic segmentation algorithms provide a solution to the problem of the model's performance degradation on data with different distributions. This article summarizes the cutting-edge progress of domain adaptive semantic segmentation algorithms and looks forward to future research directions.
Key words : domain adaptive,;semantic segmentation,;deep learning
引言
語義分割是計算機視覺的基礎(chǔ)任務(wù)之一,它為圖像的每個像素進行類別預(yù)測,,目的是將圖像分割成若干個帶有語義的感興趣區(qū)域,,以便后續(xù)的圖像理解和分析工作,推動了自動駕駛,、虛擬現(xiàn)實,、醫(yī)學(xué)影像分析和衛(wèi)星成像等領(lǐng)域的發(fā)展。近幾年來,,語義分割模型的性能有著巨大的提升,。然而,模型的性能依賴于大量人工標(biāo)注的訓(xùn)練數(shù)據(jù),,這些數(shù)據(jù)的標(biāo)注是十分耗時且代價昂貴的,,純?nèi)斯?biāo)注一張圖的時間甚至可能超過一個小時。即使現(xiàn)在使用半自動化標(biāo)注工具自動生成一部分標(biāo)注,,可以減少標(biāo)注的時間,,但仍然需要人工去調(diào)整和檢查自動生成的標(biāo)注。語義分割模型需要在與訓(xùn)練數(shù)據(jù)分布一致的數(shù)據(jù)上才能獲得優(yōu)異的性能,,而為另一不同分布的數(shù)據(jù)進行語義標(biāo)注的代價很大,。
本文詳細內(nèi)容請下載:
http://forexkbc.com/resource/share/2000005825
作者信息:
應(yīng)俊杰1,2,,樓陸飛1,,2,辛宇1,,2
(1.寧波大學(xué) 信息科學(xué)與工程學(xué)院,, 浙江 寧波315211;2.浙江省移動網(wǎng)應(yīng)用技術(shù)重點實驗室,,浙江 寧波315211)
此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。