惡意代碼可視化分類研究
電子技術(shù)應(yīng)用
丁全1,,丁伯瑞2,查正朋2,,劉德陽3
1.國網(wǎng)安徽省電力有限公司 電力科學(xué)研究院,; 2.中國科學(xué)技術(shù)大學(xué) 先進技術(shù)研究院;3.安慶師范大學(xué) 計算機與信息學(xué)院
摘要: 新型惡意代碼設(shè)計變得日益復(fù)雜,,傳統(tǒng)的識別并檢測方法已經(jīng)滿足不了當(dāng)前的需求,。因此,在對BODMAS數(shù)據(jù)集分析的基礎(chǔ)上,,將其進行可視化處理并進行分類,。同時考慮到現(xiàn)有惡意代碼可視化分類模型主要依賴全局特征,在卷積神經(jīng)網(wǎng)絡(luò)基礎(chǔ)上設(shè)計了一個CA(通道級局部特征關(guān)注)模塊和一個MA(多尺度局部特征關(guān)注)模塊,,構(gòu)建了兩個新模型,,巧妙地結(jié)合全局與局部特征。在BODMAS數(shù)據(jù)集上,,新模型在惡意代碼種類識別并分類平均準確率相比于BODMAS數(shù)據(jù)集論文描述的方法得到了提高,,證明了數(shù)據(jù)集可視化可行性和新模型的有效性,為未來研究提供了重要的數(shù)據(jù)和實驗基礎(chǔ),。
中圖分類號:TN918,;TP183 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.244838
中文引用格式: 丁全,丁伯瑞,,查正朋,,等. 惡意代碼可視化分類研究[J]. 電子技術(shù)應(yīng)用,2024,50(5):41-46.
英文引用格式: Ding Quan,,Ding Borui,,Zha Zhengpeng,et al. Research on visualization-based classification of malicious code[J]. Application of Electronic Technique,,2024,,50(5):41-46.
中文引用格式: 丁全,丁伯瑞,,查正朋,,等. 惡意代碼可視化分類研究[J]. 電子技術(shù)應(yīng)用,2024,50(5):41-46.
英文引用格式: Ding Quan,,Ding Borui,,Zha Zhengpeng,et al. Research on visualization-based classification of malicious code[J]. Application of Electronic Technique,,2024,,50(5):41-46.
Research on visualization-based classification of malicious code
Ding Quan1,Ding Borui2,,Zha Zhengpeng2,,Liu Deyang3
1.Electric Power Science Research Institute, State Grid Anhui Electric Power Co.,, Ltd.,; 2.Institute of Advanced Technology, University of Science and Technology of China,; 3.School of Computer and Information,, Anqing Normal University
Abstract: The design of new malicious code is becoming increasingly complex, and traditional recognition and detection methods can no longer meet current requirements. Therefore, based on the analysis of the BODMAS dataset, this paper performs visualization processing and classification. At the same time, considering that the existing malware visualization classification models mainly rely on global features, this paper designs a CA (Channel-level local feature Attention) module and a MA (Multi-scale local feature Attention) module based on the convolutional neural network, and constructs two new models that cleverly combine global and local features. On the BODMAS dataset, the new models have achieved an increase in the average accuracy of recognizing and classifying malware types compared to the methods described in the BODMAS dataset paper. This proves the feasibility of dataset visualization and the effectiveness of the new models, providing important data and experimental basis for future research.
Key words : BODMAS dataset;CA module,;MA module,;visualization of malicious code
引言
隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,計算機病毒已成為全球范圍內(nèi)的嚴重威脅,,給政府,、企業(yè)和個人用戶的信息安全帶來了巨大風(fēng)險。根據(jù)國家互聯(lián)網(wǎng)應(yīng)急中心統(tǒng)計顯示,,2023年11月僅一周接到的涉及黨政機關(guān)和企事業(yè)單位的漏洞總數(shù)23 920個,,比上周(20 305個)環(huán)比增加18%[1]。而且,,不斷涌現(xiàn)的新型惡意代碼,,特別是能規(guī)避殺毒軟件的變種,對防范惡意代碼的工作提出了極大挑戰(zhàn),。研究對惡意代碼家族進行分類歸納,,快速、準確地辨識已知惡意代碼家族及其衍生變種,,將極大地加強應(yīng)對惡意代碼的防范能力,。因此,對未知病毒的快速檢測和分類識別成為網(wǎng)絡(luò)安全領(lǐng)域亟需解決的問題,。
研究惡意代碼家族分類可幫助快速識別已知惡意代碼及其變種,,增強防范能力。然而,,傳統(tǒng)靜態(tài)分析檢測方式容易受加殼,、變形影響,,動態(tài)檢測雖可發(fā)現(xiàn)行為,但復(fù)雜且耗時,。機器學(xué)習(xí)算法基于提取文件樣本特征,,提高檢測精度,但仍需專家干預(yù),,無法完全自動化[2],。
本文詳細內(nèi)容請下載:
http://forexkbc.com/resource/share/2000005985
作者信息:
丁全1,丁伯瑞2,,查正朋2,劉德陽3
(1.國網(wǎng)安徽省電力有限公司 電力科學(xué)研究院,,安徽 合肥 230000,;
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載,。