《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 人工智能 > 設(shè)計(jì)應(yīng)用 > 融合圖文預(yù)訓(xùn)練的漢越多模態(tài)神經(jīng)機(jī)器翻譯
融合圖文預(yù)訓(xùn)練的漢越多模態(tài)神經(jīng)機(jī)器翻譯
電子技術(shù)應(yīng)用
韋浩翔1,,2,高盛祥1,,2,,余正濤1,2,,王曉聰1,,2
1.昆明理工大學(xué) 信息工程與自動(dòng)化學(xué)院;2.云南省人工智能重點(diǎn)實(shí)驗(yàn)室
摘要: 由于漢語(yǔ)和越南語(yǔ)之間存在顯著的語(yǔ)法差異及語(yǔ)料稀缺,,漢越神經(jīng)機(jī)器翻譯任務(wù)面臨名詞翻譯不準(zhǔn)確的挑戰(zhàn),。提出了一種新穎的多模態(tài)神經(jīng)機(jī)器翻譯方法,該方法融合了文本預(yù)訓(xùn)練模型和視覺語(yǔ)言聯(lián)合預(yù)訓(xùn)練模型,。通過(guò)文本預(yù)訓(xùn)練模型,,能夠捕獲深層的語(yǔ)言結(jié)構(gòu)和語(yǔ)義;而視覺語(yǔ)言聯(lián)合訓(xùn)練模型則提供了與文本相關(guān)聯(lián)的視覺上下文,,這有助于模型更準(zhǔn)確地理解和翻譯名詞,。兩種模型通過(guò)一個(gè)簡(jiǎn)潔高效的映射網(wǎng)絡(luò)結(jié)合,并通過(guò)Gumbel門控模塊動(dòng)態(tài)地整合多模態(tài)信息,,以優(yōu)化翻譯輸出,。在漢越及越漢翻譯任務(wù)中,,該方法相比傳統(tǒng)Transformer模型分別提升了7.13和4.27的BLEU值。
中圖分類號(hào):TP391 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.245391
中文引用格式: 韋浩翔,,高盛祥,,余正濤,等. 融合圖文預(yù)訓(xùn)練的漢越多模態(tài)神經(jīng)機(jī)器翻譯[J]. 電子技術(shù)應(yīng)用,,2024,,50(12):48-54.
英文引用格式: Wei Haoxiang,Gao Shengxiang,,Yu Zhengtao,et al. Chinese-Vietnamese multimodal neural machine translation with integrated image-text pre-training[J]. Application of Electronic Technique,,2024,,50(12):48-54.
Chinese-Vietnamese multimodal neural machine translation with integrated image-text pre-training
Wei Haoxiang1,2,,Gao Shengxiang1,,2,Yu Zhengtao1,,2,,Wang Xiaocong1,2
1.Faculty of Information Engineering and Automation,, Kunming University of Science and Technology,;2.Yunnan Key Laboratory of Artificial Intelligence
Abstract: Due to significant grammatical differences and a scarcity of linguistic resources between Chinese and Vietnamese, the task of Chinese-Vietnamese neural machine translation faces challenges in the accurate translation of nouns. This paper proposes a novel multimodal neural machine translation method that integrates a text-based pre-trained model with a visual-linguistic joint pre-training model. The text-based model captures deep linguistic structures and semantics, while the visual-linguistic joint training model provides visual context related to the text, which helps the model understand and translate nouns more accurately. The two models are combined through a streamlined and efficient mapping network and dynamically integrate multimodal information via a Gumbel gating module to optimize translation outputs. In both Chinese-Vietnamese and Vietnamese-Chinese translation tasks, this method has achieved improvements of 7.13 and 4.27 BLEU points, respectively, compared to the traditional Transformer model.
Key words : Chinese-Vietnamese neural machine translation;vision-language joint pre-training,;multimodal,;attention

引言

機(jī)器翻譯是利用計(jì)算機(jī)程序?qū)⒁环N自然語(yǔ)言的文本自動(dòng)轉(zhuǎn)換成另一種自然語(yǔ)言。隨著中國(guó)的“一帶一路”倡議的不斷推進(jìn),,中越兩國(guó)在經(jīng)濟(jì)和文化領(lǐng)域的交流與合作日益增強(qiáng),,高效且準(zhǔn)確的翻譯服務(wù)變得尤為關(guān)鍵。尤其是神經(jīng)機(jī)器翻譯技術(shù)的應(yīng)用,,極大提升了翻譯的速度和質(zhì)量,,有效地促進(jìn)了兩國(guó)之間的信息交流與理解,為雙邊關(guān)系的深化提供了堅(jiān)實(shí)的語(yǔ)言支持,。

由于漢語(yǔ)-越南語(yǔ)語(yǔ)言對(duì)屬于低資源語(yǔ)言對(duì),,語(yǔ)料資源稀缺,且漢語(yǔ)和越南語(yǔ)語(yǔ)法差異巨大,,名詞翻譯錯(cuò)誤一直是漢越神經(jīng)機(jī)器翻譯的一個(gè)難點(diǎn),,這個(gè)問(wèn)題的存在導(dǎo)致了漢越神經(jīng)機(jī)器翻譯模型的翻譯不準(zhǔn)確。

為了解決漢越神經(jīng)機(jī)器翻譯中名詞翻譯不準(zhǔn)確和在少量語(yǔ)料下翻譯模型性能不佳的問(wèn)題,,本文提出融合圖文預(yù)訓(xùn)練的漢越多模態(tài)神經(jīng)機(jī)器翻譯方法,。通過(guò)Gumbel門控機(jī)制,,將視覺-文本聯(lián)合預(yù)訓(xùn)練模型M-CLIP和多語(yǔ)言翻譯預(yù)訓(xùn)練模型mBART進(jìn)行有效結(jié)合。借助視覺信息,,解決名詞翻譯錯(cuò)誤問(wèn)題,;引入mBART預(yù)訓(xùn)練模型,提升稀缺語(yǔ)料下的翻譯性能,;通過(guò)Gumbel門控機(jī)制,,融合多模態(tài)信息,排除無(wú)關(guān)視覺信息對(duì)翻譯模型的干擾,。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://forexkbc.com/resource/share/2000006247


作者信息:

韋浩翔1,,2,高盛祥1,,2,,余正濤1,2,,王曉聰1,,2

(1.昆明理工大學(xué) 信息工程與自動(dòng)化學(xué)院,云南 昆明 650500,;

2.云南省人工智能重點(diǎn)實(shí)驗(yàn)室,,云南 昆明 650500)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載,。