《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > CTDS ADC在醫(yī)療超聲系統(tǒng)中的應用
CTDS ADC在醫(yī)療超聲系統(tǒng)中的應用
摘要: 至今,,設計人員都面對ADC選擇的折衷考慮,。流水線轉(zhuǎn)換器提供高分辨率和寬動態(tài)范圍,但其功耗相當高,。另一種方法,,分立時間Δ∑轉(zhuǎn)換器幾乎不需要太大的功率,,但嚴格受速度所限。
Abstract:
Key words :

  至今,,設計人員都面對ADC選擇的折衷考慮,。流水線轉(zhuǎn)換器提供高分辨率和寬動態(tài)范圍,但其功耗相當高,。另一種方法,,分立時間Δ∑轉(zhuǎn)換器幾乎不需要太大的功率,但嚴格受速度所限,。

  CTDS ADC

  連續(xù)時間Δ∑(CTDS)技術可填補轉(zhuǎn)換器的空白,。Xignal公司最近推出的產(chǎn)品可工作在40Msample/s(相當于流水線轉(zhuǎn)換器的50~60Msample/s),具有12位或14位分辨率,、高功能集成度(包含精確的片上時鐘源),,其功耗僅70mW,。此產(chǎn)品也具有1個電阻輸入級,這很容易驅(qū)動,,而不用借助緩沖放大器,。

  圖1示出CTDS ADC 與流水線轉(zhuǎn)換器相對性能比較,此圖是根據(jù)IEEE認可的FOM(性能因數(shù))測量,。FOM是每次轉(zhuǎn)換的能量量測,。FOM也示出工藝結構未來的標度,連續(xù)時間Δ∑器件將沿給出較高性能水平的路線圖發(fā)展,。

CTDS ADC 與流水線轉(zhuǎn)換器相對性能比較

  圖2標出1個完整的模/數(shù)轉(zhuǎn)換系統(tǒng),。左手邊的圖示出1個完整的系統(tǒng)對于流水線轉(zhuǎn)換器需5個外部電路元件。它們是可編程增益放大器(通過分離的DAC進行增益控制),;去除噪聲的抗混淆濾波器,;緩沖ADC本身容性輸入的輸入驅(qū)動器;提供精確定時基準的高性能時鐘和鎖相環(huán),。與此相反,,連續(xù)時間Δ∑實現(xiàn)方法去除了所需的抗混淆濾波和輸入驅(qū)動器,而Xignal的實現(xiàn)方法把所有其他功能都集成在片上,。

1個完整的模/數(shù)轉(zhuǎn)換系統(tǒng)

  CTDS轉(zhuǎn)換技術的優(yōu)點是:更快和更簡單的系統(tǒng)設計,,較低的功耗,對動態(tài)范圍或速度不需折衷考慮,。在多通道應用中,,上述CTDC ADC的優(yōu)點能增值,而且能使設計人員采用新的和有益的系統(tǒng)結構,,而這在以前是不可能的,。此技術的應用范圍是廣泛的,包括電子業(yè)的所有領域,,特別是來自各種傳感器的模擬信號需要轉(zhuǎn)換為數(shù)字信號的領域,。

  醫(yī)療超聲應用

  在醫(yī)療超聲系統(tǒng)中,超聲換能器發(fā)射超聲波,,超聲波被目標物反射并重新被換能器接收,。為了掃描1個較大的區(qū)域并在一定的距離聚集在目標上,需要在目標小,,需要在一維或二維陣列中配置多發(fā)送/接收元件以便形成波束,。波束的聚焦和方向可以電控。

  換能器通過靈活的纜線連接到處理數(shù)據(jù)的數(shù)據(jù)處理單元,。每個換能元件通過自己的數(shù)據(jù)通道或多路轉(zhuǎn)換電路連接到處理單元,。高端系統(tǒng)配量高達512個通道,中等性能系統(tǒng)可達256個通道,,便攜系統(tǒng)可達128個通道,。

  根據(jù)目標到傳感器頭的距離和目標性質(zhì),,經(jīng)纜線接收和發(fā)送的模擬信號幅度是寬范圍的。因此,,纜線是由若干低損耗同軸芯組成,,這是超聲系統(tǒng)是昂貴的元件之一。盡管如此,,纜線損耗和換能器接口上的損耗是高性能和相當昂貴接收器的要求,。

  信號完整性

  若ADC做得緊靠換能器,則會改善信號完整性,。模擬前端與ADC集成一起并把器件直接放置在換能器中將會降低對接收器性能的要求,,而且數(shù)字傳輸與模擬信號處理單元相比更加可靠、成本更低,。然而,,CDTS技術開發(fā)之前所用的模擬前端,其流水線ADC每個通道耗電高達0.5W,。這對于1個中等系統(tǒng)(128個通道)其耗電達64W,,所產(chǎn)生的熱會影響換能器頭的性能并對病人和醫(yī)生造成很大的不適。相反,,在同樣系統(tǒng)中采用CTDS方案耗電只有8.75W,,甚至耗電會更小(采用多通道ADC器件共享某些資源,如PLL跨接多通道),。用1個8通道12位ADC可以實現(xiàn)功耗40mW/通道或128通道耗電5.12W,。

  便攜系統(tǒng)要求縮小超聲掃描器的尺寸。在實現(xiàn)小型和低成本系統(tǒng)中,,ADC功耗是重要的設計參量,,這種小型系統(tǒng)轉(zhuǎn)換發(fā)生在換能器頭或處理單元中,系統(tǒng)要求最少的冷卻,。新系統(tǒng)也可能是電池供電,,所以使功耗最小是更關鍵的因素。

  繼續(xù)研究

  人們研究在連續(xù)波多普勒應用中用數(shù)字波束形成器替代模擬波束形成器而且經(jīng)過同樣的數(shù)字處理通路處理來自幾個超聲節(jié)點的所有數(shù)據(jù),。數(shù)字域所增加的功耗可以采用較低電源電壓1.2V或更低的先進CMOS工藝來降低。用這樣的低電壓一般的ADC技術不可能達到所要求的性能,。連續(xù)時間Δ∑技術用1.2V電源能提供所要求的性能并將隨著CMOS工藝技術的發(fā)展會進一步降低功耗和減小尺寸,。

  在換能器頭中采用CTDS ADC的超聲系統(tǒng)簡化結構示于圖3。除ADC外,,有源換能器包含低功率可變增益放大器,、串行器和數(shù)字接口,這能大大地降低用于互連主處理單元的纜線數(shù)量,。

在換能器頭中采用CTDS ADC的超聲系統(tǒng)簡化結構

  CDTS ADC 的優(yōu)點是在最低可能的功耗下提供所需的高速度,、高分辨率,。在汽車、醫(yī)療,、工業(yè)和測試測量設備的與傳感器相關的應用中,,此技術可以用于構成新的結構,使模/數(shù)轉(zhuǎn)換靠近傳感器,。

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權禁止轉(zhuǎn)載。