O 引言
伴隨著經(jīng)濟(jì)的發(fā)展及人口的增長(zhǎng),人類對(duì)能源的需求增加,,而以煤炭,、石油為主的常規(guī)能源存在有限性,且污染和破壞自然環(huán)境,。風(fēng)能是一種清潔的可再生能源,,并且資源豐富,有著無(wú)需開(kāi)采,、運(yùn)輸?shù)奶攸c(diǎn),。目前風(fēng)力發(fā)電系統(tǒng)分非直驅(qū)風(fēng)力發(fā)電系統(tǒng)和直驅(qū)風(fēng)力發(fā)電系統(tǒng),前者主要采用齒輪箱對(duì)風(fēng)輪機(jī)提速后,,驅(qū)動(dòng)常規(guī)異步發(fā)電機(jī),,而直驅(qū)風(fēng)力發(fā)電在整個(gè)體系結(jié)構(gòu)中,,由于省去了增速齒輪箱,,減小了風(fēng)力發(fā)電機(jī)的體積和重量,省去了維護(hù),,降低了風(fēng)力發(fā)電機(jī)的運(yùn)行噪聲,,所以研究直驅(qū)風(fēng)力發(fā)電系統(tǒng)的電能變換裝置對(duì)提高風(fēng)電轉(zhuǎn)換效率及開(kāi)發(fā)風(fēng)力發(fā)電技術(shù)的推廣,有著重要的社會(huì)效益和經(jīng)濟(jì)效益,。
1 常規(guī)直驅(qū)風(fēng)力發(fā)電系統(tǒng)的特性
直驅(qū)風(fēng)力發(fā)電系統(tǒng)采用低速的永磁同步發(fā)電機(jī)取代了異步發(fā)電機(jī),,在永磁直驅(qū)風(fēng)力發(fā)電系統(tǒng)中,風(fēng)輪機(jī)將捕獲的風(fēng)能以機(jī)械能的形式驅(qū)動(dòng)永磁發(fā)電機(jī),,永磁發(fā)電機(jī)的轉(zhuǎn)速隨著風(fēng)速的變化而進(jìn)行變化,,發(fā)出電壓和頻率都變化的電能,需要經(jīng)過(guò)電能變換電路輸出恒壓恒頻的電能?,F(xiàn)階段常規(guī)離網(wǎng)型戶用風(fēng)力發(fā)電系統(tǒng)的基本結(jié)構(gòu)如圖1所示,。
風(fēng)速的時(shí)變性,使得風(fēng)力發(fā)電機(jī)的電壓及頻率變化,,不易于直接被負(fù)載利用,,所以目前的獨(dú)立運(yùn)行風(fēng)力發(fā)電系統(tǒng)通過(guò)“交流-直流-交流”的轉(zhuǎn)換方式供電,且要考慮風(fēng)速很弱及無(wú)風(fēng)的情況,,系統(tǒng)的裝置中使用了蓄電池進(jìn)行儲(chǔ)能,。先用整流器將發(fā)電機(jī)的交流電變成直流電向蓄電池充電,再用逆變器將直流電變換成電壓和頻率穩(wěn)定的交流電輸出供給負(fù)載使用。系統(tǒng)的能量傳輸分配中要經(jīng)過(guò)兩次能量轉(zhuǎn)換:電能-化學(xué)能-電能,,能量的利用率偏低,,且由于風(fēng)力發(fā)電發(fā)出的能量較小,往往達(dá)不到負(fù)載需求的電能,。
2 改造后的直驅(qū)風(fēng)力發(fā)電系統(tǒng)
2.1 風(fēng)力發(fā)電系統(tǒng)的基本組成
針對(duì)直驅(qū)風(fēng)力發(fā)電的特性,,研究設(shè)計(jì)的風(fēng)力發(fā)電系統(tǒng)應(yīng)由風(fēng)輪機(jī)、永磁同步發(fā)電機(jī),、電能變換裝置(整流器,、直流調(diào)壓裝置、逆變器),、控制器,、泄能負(fù)載、蓄電池,、制動(dòng)剎車(chē)裝置和用戶負(fù)載等組成,,其設(shè)計(jì)研究的永磁直驅(qū)風(fēng)力發(fā)電系統(tǒng)的結(jié)構(gòu)組成原理圖如圖2所示。
2.2 能量傳輸分配分析
分析在正常情況下的能量流動(dòng)路徑,,由圖2所列出的風(fēng)電系統(tǒng)的供電模式可知,,在考慮風(fēng)速大于切入風(fēng)速及小于切出風(fēng)速時(shí),風(fēng)力發(fā)電控制系統(tǒng)中的能量傳輸?shù)年P(guān)系大體上分4種情況如圖3所示,。
正常啟動(dòng)風(fēng)速到達(dá)后,,風(fēng)輪機(jī)開(kāi)始運(yùn)行,當(dāng)風(fēng)速較大時(shí),,風(fēng)力發(fā)電機(jī)組發(fā)出的電能,,經(jīng)過(guò)電能變換裝置調(diào)節(jié)后,得到用戶負(fù)載所需要的交流電,,多余的電能經(jīng)過(guò)蓄電池儲(chǔ)存起來(lái),;當(dāng)風(fēng)速不足時(shí),風(fēng)力發(fā)電機(jī)組發(fā)出的電能較小或則不發(fā)電能,,此時(shí)由蓄電池發(fā)電給電能變換裝置,,進(jìn)而變換后,供給用戶負(fù)載,;當(dāng)風(fēng)力發(fā)電機(jī)組發(fā)出的電能遠(yuǎn)大于用戶所需的電能,,且在蓄電池電量已被充滿的情況下,采用泄能負(fù)載控制器對(duì)多余的電能放電,。
2.3 控制策略的分析設(shè)計(jì)
在直驅(qū)風(fēng)力發(fā)電系統(tǒng)中,,風(fēng)輪機(jī)對(duì)風(fēng)能的捕獲及其電能變換裝置的控制策略在整個(gè)風(fēng)電系統(tǒng)運(yùn)行過(guò)程中決定風(fēng)電轉(zhuǎn)換的效率,根據(jù)風(fēng)速的變化,,負(fù)載的變化以及儲(chǔ)能裝置容量的變化,,來(lái)研究風(fēng)電系統(tǒng)的控制策略對(duì)風(fēng)力發(fā)電系統(tǒng)的穩(wěn)定運(yùn)行以及最大化的利用風(fēng)能有著重要的意義,。由于離網(wǎng)型風(fēng)力發(fā)電系統(tǒng)多用于農(nóng)區(qū)、牧區(qū)等遠(yuǎn)離常規(guī)電網(wǎng)的場(chǎng)所,,風(fēng)力發(fā)電是主要的供電形式,,根據(jù)這一地區(qū)用戶負(fù)載的用電情況,在常規(guī)情況下可以設(shè)負(fù)載的電流閾值為Io,,儲(chǔ)能裝置蓄電池SoC的閾值為Co,,實(shí)測(cè)風(fēng)速的閾值為Vo。當(dāng)風(fēng)力發(fā)電機(jī)運(yùn)行在切入風(fēng)速與切出風(fēng)速之間時(shí),,設(shè)定風(fēng)力發(fā)電體系中用戶負(fù)載電流,、蓄電池SoC及實(shí)測(cè)風(fēng)速分別大于各自設(shè)定的閾值時(shí),為1狀態(tài),;小于設(shè)定閾值時(shí)為0狀態(tài),,則可列出表1。
在表中開(kāi)關(guān)狀態(tài)一行中數(shù)值位是“1”的,,表示在圖2中的Tx開(kāi)關(guān)接通,,為“0”的這一路表示開(kāi)關(guān)斷開(kāi),供電模式下的1~8種狀態(tài)分別表示為:T2接通,,風(fēng)機(jī)供電,;T1,T2接通,,風(fēng)力發(fā)電機(jī)供電,,蓄電池充電;T2,,T3接通,,風(fēng)力發(fā)電機(jī)供電,蓄電池放電,;T2,T4接通,,風(fēng)機(jī)供電,,泄能負(fù)載介入;T2,,T3接通,,風(fēng)力發(fā)電機(jī)供電,蓄電池放電,;T2接通,,風(fēng)機(jī)供電;T2,,T3接通,,風(fēng)力發(fā)電機(jī)供電,,蓄電池放電;T2接通,,風(fēng)機(jī)供電,。
在風(fēng)力發(fā)電系統(tǒng)中,以風(fēng)力發(fā)電機(jī)提供電能為主,,蓄電池放電為輔,,上述幾種形式為風(fēng)速達(dá)到風(fēng)輪機(jī)運(yùn)轉(zhuǎn)的切入風(fēng)速,且未超出切出風(fēng)速,,在穩(wěn)定的工作風(fēng)速內(nèi),,并未提及無(wú)風(fēng)以及風(fēng)速過(guò)大,超出風(fēng)力發(fā)電機(jī)承受的最大風(fēng)速,,那時(shí)將要啟動(dòng)機(jī)械剎車(chē)裝置,,將風(fēng)輪機(jī)鎖住,保
護(hù)風(fēng)力發(fā)電系統(tǒng),。
3 風(fēng)電體系下的電能變換電路控制系統(tǒng)設(shè)計(jì)
3.1 控制系統(tǒng)方案的確定
風(fēng)力發(fā)電機(jī)發(fā)出的電能電壓為三相交流電,,且輸出電壓較低,需經(jīng)過(guò)整流器進(jìn)行整流,,得到的直流電在經(jīng)過(guò)控制器的作用下對(duì)蓄電池進(jìn)行充電,,設(shè)計(jì)中采用的是三相橋式不可控整流。而對(duì)于直流變換電路主要功能是:調(diào)節(jié)直流輸出電壓使之恒定,,以達(dá)到后級(jí)逆變電路輸入要求,;提高逆變電路的功率因數(shù)并抑制高次諧波,完成功率因數(shù)的校正,,所以可采用直流Boost升壓斬波電路,。選用全橋逆變電路,其特點(diǎn)為帶負(fù)載能力強(qiáng),,電路容易達(dá)到大功率,;又由于LC濾波器有著對(duì)輸出波形中的高次諧波進(jìn)行濾波處理的能力,因此選用了輸出端帶LC濾波器的單相全橋逆變電路的拓?fù)浣Y(jié)構(gòu),,以使逆變電路輸出高質(zhì)量的正弦波形,。
3.2 電能變換電路的控制器設(shè)計(jì)
設(shè)計(jì)的永磁直驅(qū)風(fēng)力發(fā)電系統(tǒng)發(fā)出電壓在18~50 V之間變化時(shí),經(jīng)過(guò)電能變換電路的處理得到穩(wěn)定的220 V電壓,,通過(guò)研究得出在設(shè)計(jì)整流及Boost升壓變換電路的控制策略時(shí),,應(yīng)該以控制輸出電壓為出發(fā)點(diǎn),使輸出電壓保持恒定為目的,,且同時(shí)要保證系統(tǒng)功率因數(shù)盡可能的接近于1,,綜合風(fēng)電系統(tǒng)特殊環(huán)境及Boost變換的電路CCM工作特性的基礎(chǔ)上,控制系統(tǒng)的設(shè)計(jì)中采用了平均電流控制技術(shù),,結(jié)構(gòu)上為電流內(nèi)環(huán)和電壓外環(huán)構(gòu)成雙閉環(huán)結(jié)構(gòu),;而對(duì)于逆變電路部分則在電路的控制方式上選用正弦脈寬調(diào)制方式對(duì)逆變電路進(jìn)行控制,,設(shè)計(jì)了采用PI調(diào)節(jié)器及PWM控制的電路控制策略。在確定了系統(tǒng)中電路的運(yùn)行狀態(tài)后,,確定了電路參數(shù),,并利用Matlab\Sireulink搭建了電能變換電路逆變部分的仿真模型,如圖4所示,。
仿真結(jié)果如圖5所示,。在圖5中從上至下分別為未經(jīng)過(guò)濾波的負(fù)載電流波形、經(jīng)過(guò)濾波后的負(fù)載電流電壓波形,,仿真結(jié)果可見(jiàn)在允許的范圍內(nèi)達(dá)到了負(fù)載要求的工作電壓,。
4 結(jié)語(yǔ)
針對(duì)永磁直驅(qū)風(fēng)力發(fā)電體系下的電能變換電路進(jìn)行了設(shè)計(jì),并對(duì)所設(shè)計(jì)的控制策略及方案在Matlab軟件下應(yīng)用Simulink來(lái)完成的模型搭建和仿真調(diào)試,。通過(guò)仿真,,驗(yàn)證了設(shè)計(jì)的電能變換電路拓?fù)浣Y(jié)構(gòu)的正確性及控制策略的合理性,為直驅(qū)風(fēng)力發(fā)電系統(tǒng)的電能變換的研究提供了一定的信息,。