近年來射頻微電子系統(tǒng)(RF MEMS)器件以其尺寸小,、功耗低而受到廣泛關(guān)注,特別是MEMS開關(guān)構(gòu)建的移相器與天線,,是實(shí)現(xiàn)上萬單元相控陣?yán)走_(dá)的關(guān)鍵技術(shù),,在軍事上有重要意義。在通信領(lǐng)域上亦憑借超低損耗,、高隔離度,、成本低等優(yōu)勢在手機(jī)上得到應(yīng)用。然而RF MEMS開關(guān)普遍存在驅(qū)動電壓高,、開關(guān)時(shí)間長的問題,,劣于FET場效應(yīng)管開關(guān)和PIN二極管開關(guān)。相對于國外已取得的成果,國內(nèi)的研究尚處于起步階段,。下文將針對MEMS開關(guān)的缺陷做一些改進(jìn),。
1 RF MEMS開關(guān)的一般考慮
當(dāng)MEMS開關(guān)的梁或膜受靜電力吸引向下偏移到一定程度時(shí)達(dá)到閾值電壓,梁或膜迅速偏移至下極板,,電壓大小取決于材料參數(shù),、開關(guān)尺寸及結(jié)構(gòu)。梁或膜的材料需要比較好的楊氏模量與屈服強(qiáng)度,,楊氏模量越大諧振頻率就越高,,保證工作的高速穩(wěn)定及開關(guān)壽命;尺寸設(shè)計(jì)上要考慮靜電驅(qū)動力的尺寸效應(yīng),;結(jié)構(gòu)的固有振動頻率則影響開關(guān)的最高工作速度,。單從結(jié)構(gòu)上看,降低驅(qū)動電壓的途徑為:降低極板間距,;增加驅(qū)動面積,;降低梁或膜的彈性系數(shù)。常見的結(jié)構(gòu)有串,、并聯(lián)懸臂梁開關(guān),、扭轉(zhuǎn)臂開關(guān)和電容式開關(guān),前三者為電阻接觸式,,金屬與信號線外接觸時(shí)存在諸如插入損耗大等很多問題,,而電容接觸式開關(guān)的絕緣介質(zhì)也存在被擊穿的問題。有研究表明,,所加電壓越高開關(guān)的壽命越短,,驅(qū)動電壓的降低勢必導(dǎo)致開關(guān)速度變慢,如何同時(shí)滿足驅(qū)動電壓和開關(guān)速度的要求是當(dāng)前的困難所在,。
2 RF MEMS開關(guān)的模擬與優(yōu)化
對于電容式開關(guān),,驅(qū)動電壓隨著橋膜長度的增加而下降,橋膜殘余應(yīng)力越大驅(qū)動電壓也越大,。通常把楊氏張量78 GPa,、泊松比O.44的Au作為橋膜材料,為獲得好的隔離度要求開關(guān)有大的電容率,,這里選介電常數(shù)為7.5的S3N4作為介質(zhì)層,,橋膜單元為 Solid98,加5 V電壓,,電介質(zhì)為空氣,,下極板加O V電壓。然后用ANSYS建模,、劃分網(wǎng)格,、加載并求解靜電耦合與模態(tài)分析。5 V電壓下的開關(guān)形變約為O.2 μm左右,尚達(dá)不到低壓驅(qū)動要求,。提取開關(guān)前五階模態(tài)如圖1所示,。
可見開關(guān)從低階到高階的共振頻率越來越大,分別為79.9 kHz,,130.3 kHz,,258.8 kHz,360.7 kHz,,505.6 kHz,,一階模態(tài)遠(yuǎn)離其他模態(tài),即不容易被外界干擾,,只有控制開關(guān)頻率低于一階模態(tài)的諧振頻率才能保證其穩(wěn)定工作,。由于實(shí)際開關(guān)時(shí)間仍不理想,所以在膜上挖孔以減小壓縮模的阻尼,,從而增加開關(guān)速度,。雖然關(guān)態(tài)的電容比下降了,但孔可以減輕梁的重量,,得到更高的力學(xué)諧振頻率,。最終的模型共挖了100個(gè)孔,并對兩端做了彎曲處理以降低驅(qū)動電壓,,仿真得到5 V電壓下形變?yōu)?μm以上、穩(wěn)定的開關(guān)時(shí)間在5μs以下的電容式開關(guān),,如圖2所示,。
考慮到電容式開關(guān)仍存在的介質(zhì)擊穿問題,這里對其結(jié)構(gòu)加以改進(jìn),,將扭轉(zhuǎn)臂杠桿與打孔電容膜相結(jié)合,,在減小驅(qū)動電壓和提高開關(guān)速度的同時(shí),又不影響電容比,,一定程度上抑制了電擊穿,。其工作原理是:push電極加電壓時(shí)杠桿上抬,介質(zhì)膜與接觸膜間距離增大導(dǎo)致其耦合電容很小,,信號通過傳輸線,;pull電極加電壓時(shí)杠桿下拉,耦合電容變大,,微波信號被反射,。材料選擇上仍以Au和S3N4為主,某些部分可用A1代替Au,。結(jié)構(gòu)與尺寸的設(shè)計(jì)上由超越方程與開關(guān)通斷下的電容方程得到估計(jì)值,,下極板為25×25(單位制采用μMKSV,長度單位為μm,下同),,其上附有絕緣介質(zhì)層,,孔為3.4×3.4,杠桿為 100x30,,結(jié)構(gòu)層為20×20,,極板厚度為1。用ANSYS仿真得到圖3所示結(jié)果,。
在ANSYS做靜電耦合與模態(tài)分析后利用ANSOFT HFSS對該開關(guān)進(jìn)行3D電磁場仿真,,進(jìn)一步求得其插入損耗與隔離度,確定共面波導(dǎo)和接觸膜的結(jié)構(gòu),,從而完善開關(guān)的射頻性能,。建模時(shí)忽略開關(guān)的彎曲,定義材料特性與空氣輻射邊界,,利用wave port端口進(jìn)行仿真,,分別求解開態(tài)的插入損耗和關(guān)態(tài)的隔離度。介質(zhì)層較薄時(shí),,開關(guān)在10 GHz附近具有良好的隔離度,,且插入損耗在1 dB以下。
3 RF MEMS開關(guān)的制備工藝
合理選擇生長介質(zhì)膜的工藝對開關(guān)性能有很大影響,,本文的RF MEMS開關(guān)需要在基底表面生長一層氮化硅膜,,一般選擇LP-CVD工藝,而介質(zhì)膜則選擇PECVD工藝為宜,,金屬膜的性能要求相對較低,,用濺射方法即可??紤]到基底要求漏電流與損耗盡可能小,,選取高阻硅與二氧化硅做基底,后者保證了絕緣要求,。金質(zhì)信號線與下極板通過正膠剝離形成,,電子束蒸發(fā)得到鋁質(zhì)上極板。但從可行性考慮,,部分方案的工藝實(shí)現(xiàn)對于國內(nèi)的加工工藝尚有難度,,只能犧牲微系統(tǒng)的性能來達(dá)到加工條件。
4 結(jié)語
本文主要從結(jié)構(gòu)上進(jìn)行了創(chuàng)新,,通過計(jì)算機(jī)輔助設(shè)計(jì)仿真分析得到了理論解,,一定程度上滿足了設(shè)計(jì)初衷,但在工藝上還不成熟,。更低的驅(qū)動電壓和更高的開關(guān)頻率仍是亟待解決的問題,,另外如何保證實(shí)際產(chǎn)品的可靠性,、實(shí)用性也是未來的研究重點(diǎn)。