利用Σ-Δ ADC在工業(yè)多通道數(shù)據(jù)采集系統(tǒng)中進行信號調(diào)理
本應用筆記旨在幫助設計人員在高性能、多通道數(shù)據(jù)采集系統(tǒng)(DAS)設計中優(yōu)化工業(yè)傳感器與高性能ADC之間的連接電路,。以電網(wǎng)監(jiān)測系統(tǒng)為例,,本文說明了使用MAX11040 Σ-Δ ADC的優(yōu)勢以及如何選擇適當?shù)募軜?gòu)和外圍器件,優(yōu)化系統(tǒng)性能,。
<-- ======================================================================= --><-- CONTENT: DB HTML --><-- ======================================================================= -->
引言
許多高端工業(yè)應用中,,高性能數(shù)據(jù)采集系統(tǒng)(DAS)與各種傳感器之間需要提供適當?shù)慕涌陔娐贰H绻盘柦涌谝筇峁┒嗤ǖ?、高精度的幅度和相位信息,,這些工業(yè)應用可以充分利用MAX11040等ADC的高動態(tài)范圍、同時采樣以及多通道優(yōu)勢,。本文介紹了MAX11040的Σ-Δ架構(gòu),,以及如何合理選擇設計架構(gòu)和外部元件,以獲得最佳的系統(tǒng)性能,。
高速,、Σ-Δ架構(gòu)的優(yōu)勢
圖1所示為高端三相電力線監(jiān)視/測量系統(tǒng),,這類工業(yè)應用需要以高達117dB的動態(tài)范圍、64ksps采樣速率精確地進行多通道同時采集數(shù)據(jù),。為了獲得最高系統(tǒng)精度,,必須正確處理來自傳感器(例如,圖1中的CT,、PT變壓器)的信號,,以滿足ADC輸入量程的要求,從而保證DAS的性能指標滿足不同國家相關(guān)標準的要求,。
圖1. 基于MAX11040的DAS在電網(wǎng)監(jiān)控中的應用
從圖1可以看到,,采用兩片MAX11040 ADC可以同時測量交流電的三相及零相的電壓和電流。該ADC基于Σ-Δ架構(gòu),,利用過采樣/平均處理得到較高的分辨率,。每個ADC通道利用其專有的電容開關(guān)Σ-Δ調(diào)制器進行模/數(shù)轉(zhuǎn)換。該調(diào)制器將輸入信號轉(zhuǎn)換成低分辨率的數(shù)字信號,,它的平均值代表輸入信號的量化信息,,時鐘頻率為24.576MHz時對應的采樣率為3.072Msps。數(shù)據(jù)流被送入內(nèi)部數(shù)字濾波器處理,,消除高頻噪聲,。處理完成后可以得到高達24位的分辨率。
MAX11040為4通道同時采樣ADC,,其輸出數(shù)據(jù)是處理后的平均值,,這些數(shù)值不能像逐次逼近(SAR) ADC的輸出那樣被看作是采樣“瞬間”的數(shù)值¹,²。
MAX11040能夠為設計人員提供SAR架構(gòu)所不具備的諸多功能和特性,,包括:1ksps采樣率下高達117dB的動態(tài)范圍,;積分非線性和微分非線性(INL、DNL)也遠遠優(yōu)于SAR ADC,;獨特的采樣相位(采樣點)調(diào)節(jié)能夠從內(nèi)部補償外部電路(驅(qū)動器,、變壓器、輸入濾波器等)引入的相位偏移,。
另外,,MAX11040集成一個數(shù)字低通濾波器,處理每個調(diào)制器產(chǎn)生的數(shù)據(jù)流,,得到無噪聲,、高分辨率的數(shù)據(jù)輸出。該低通濾波器具有復雜的頻率響應函數(shù),,具體取決于可編程輸出數(shù)據(jù)率,。輸入端的阻/容(RC)濾波器結(jié)合MAX11040的數(shù)字低通濾波器,大大降低了MAX11040輸入信號通道抗混疊濾波器的設計難度,,甚至可以完全省去抗混疊濾波器,。表1列舉了MAX11040的部分特性,,關(guān)于MAX11040數(shù)字低通濾波器或表中列出的特性指標的詳細信息,請參考器件數(shù)據(jù)資料,。
表1. MAX11040 ADC的關(guān)鍵指標
Part | Channels | Input range (VP-P) | Resolution (Bits) | Speed (ksps, max) | SINAD (1ksps) (dB) | Input impedance |
MAX11040 | 4 | ±2.2 | 24 | 64 | 117 | High, (130kΩ, approx) |
電力線應用對ADC性能的要求
電力線監(jiān)控應用中,CT (電流)互感器和PT (電壓)互感器輸出范圍的典型值為:±10V或±5V峰峰值(VP-P),。而MAX11040的輸入量程為
連接到通道1的電路代表一個單端設計,,這種配置下,,變壓器的一端接地,通過一個簡單的電阻分壓器和電容完成信號調(diào)理,。
對于共模噪聲(該噪聲在ADC的兩個輸入端具有相同幅度)比較嚴重的應用場合,,推薦采用圖中通道4所示差分連接電路。利用MAX11040的真差分輸入大大降低共模噪聲的影響,。
圖2. MAX11040在電力線監(jiān)控典型應用中的原理框圖,圖中給出了一個±10V或±5V輸出的變壓器接口,。通道4接口電路采用差分設計,,通道1采用單端設計。
PT和CT測量變壓器相當于低阻互感器(等效阻抗RTR通常在10Ω至100Ω量級),。為方便計算,,以下示例中假設:變壓器相當于一個有效輸出電阻RTR = 50Ω的電壓源;為便于演示,,變壓器可以由一個50Ω輸出阻抗的低失真函數(shù)發(fā)生器代替,,如圖3所示。MAX11040的輸入阻抗與時鐘速率,、ADC輸入電容有關(guān),。連接適當?shù)呐月冯娙軨3,設定XIN時鐘頻率 = 24.576MHz,,則得到輸入阻抗RIN等于130kΩ ±15%,,誤差取決于內(nèi)部輸入電容的波動。
R1,、R2組成的電阻分壓網(wǎng)絡將±10V或±5V輸入信號轉(zhuǎn)換成ADC要求的±2.2V滿量程范圍(FSR),。為確保該電路工作正常,,需要優(yōu)化R1和R2電阻值,以及C1,、C2和C3電容的選擇,,以滿足±10V或±5V輸入的要求。電阻R1和R2必須有足夠高的阻抗,,避免CT和PT變壓器輸出過載,。同時,R2阻值還要足夠小,,以避免影響ADC的輸入阻抗(R2 << RIN),。
對于單端設計,圖2中MAX11040通道1的輸入電壓VIN(f),,可以利用式1計算:
(式1)
式中:
VTR是CT和PT變壓器的輸出電壓,。
RTR是變壓器的等效阻抗。
R1,、R2構(gòu)成電阻分壓網(wǎng)絡,。
RIN是MAX11040的輸入阻抗。
R2llRIN是R2和RIN的并聯(lián)阻抗,。
C3為輸入旁路電容,。
f是輸入信號頻率。
VIN(f)是MAX11040的輸入電壓,。
可以利用類似方法進行差分輸入設計,。
為保持高精度電阻分壓比和正確的旁路特性,應選取低溫度系數(shù),、精度為1%甚至更好的金屬薄膜電阻,。電容應選取高精度陶瓷電容或薄膜電容。最好選擇信譽較好的供應商購買這些元件,,例如Panasonic®,、Rohm®、Vishay®,、Kemet®和AVX®等,。
MAX11040EVKIT提供了一個全功能、8通道DAS系統(tǒng),,評估板能夠幫助設計人員加快產(chǎn)品的開發(fā)進程,,例如,驗證圖2中所推薦的原理圖方案,。
圖3. 基于MAX11040EVKIT的開發(fā)系統(tǒng)框圖,,需要兩個精密儀表對測量通道進行適當校準。測量結(jié)果可以通過USB發(fā)送到PC機,,然后轉(zhuǎn)換成Excel®文件作進一步處理,。
函數(shù)發(fā)生器產(chǎn)生的±5V信號連接到MAX11040的通道2,而另一函數(shù)發(fā)生器產(chǎn)生的±10V信號連接到MAX11040的輸入通道1,。電阻分壓網(wǎng)絡R1/R2和R3/R4對±5V或±10V輸入進行相應的調(diào)整,,使其接近ADC的滿量程范圍(FSR = ±2.2VP-P)。
電阻分壓網(wǎng)絡R1和R2的取值以及旁路電容C1和C2的取值如表2所示,,均由式1計算得到,接近最佳的輸入動態(tài)范圍(約±2.10VP-P),。該動態(tài)范圍限制在0.05%相當高的精度范圍,,非常適合MAX11040。有關(guān)精度指標的詳細信息,,請參考MAX11040數(shù)據(jù)資料,。
表2. 圖3中的電阻和旁路電容計算
VTR ±VP-P |
RTR (Ω) |
R1 (Ω) |
R2 (Ω) |
RIN (Ω) |
C3 (µF) |
f (Hz) |
VIN ±VP-P |
VADC (VRMS) |
Calibration factor-KCAL |
Calibration factor error (%) |
Calculations for nominal VTR and standard components (nominal) values | ||||||||||
10 | 50 | 3320 | 909 | 130000 | 0.1 | 50 | 2.11268 | 1.4939 | 4.73301 | 0.70 |
5 | 50 | 2490 | 1820 | 130000 | 0.1 | 50 | 2.07026 | 1.46395 | 2.41516 | 0.99 |
Measured values for VTR, VIN, VINRMS with real components values and tolerances used in the experiment | ||||||||||
9.863 | 50 ± 10% | 3320 ± 1% | 909 ± 1% | 130000 ± 15% | 0.1 ± 10% | 50 | 2.09872 | 1.483899 | 4.699912 | 0 |
4.932 | 50 ± 10% | 2490 ± 1% | 1820 ± 1% | 130000 ± 15% | 0.1 ± 10% | 50 | 2.06151 | 1.45833 | 2.3914 | 0 |
0 | 50 ± 10% | 2490 ± 1% | 1820 ± 1% | 130000 ± 15% | 0.1 ± 10% | 50 | 0 | 0.00048 | NA | NA |
表2列出的計算值均來自式1的計算結(jié)果和圖3定義的精確測量。表格頂部給出了式1在標稱輸入電壓下的理論計算結(jié)果,,選擇標準的分立元件,。表2底部給出了演示系統(tǒng)中實際測量的元件值以及測試誤差,同時還給出了用于FSR校準和計算得到的KCAL系數(shù),,計算公式如下:
校準系數(shù)KCAL按照式2計算:
KCAL = VTRMAX/(VADCMAX - VADC0) (式2)
式中:
VTRMAX是輸入最大值,,分別代表±5V或±10V輸入信號。
VADCMAX是測量,、處理后的ADC值,,MAX11040評估板設置與圖3相同,輸入信號設置為VTRMAX,。
VADC0是測量,、處理后的ADC值,MAX11040評估板設置與圖3相同,,輸入信號設置為VIN = 0 (系統(tǒng)零失調(diào)測量),。
KCAL (本實驗中)是針對特別通道的校準系數(shù),根據(jù)VADC計算輸入信號VTR,。
KCAL誤差計算顯示只基于標稱值的KCAL“理論值”可能與基于實際測量值計算的KCAL之間存在1%左右的誤差,。
所以,只是依靠理論計算還不足以支持實際要求,;如果設計中需要達到EU IEC 62053標準要求的0.2%精度,,就必須對每個測量通道進行滿量程(FSR)校準。
表3所示結(jié)果驗證了½ FSR輸入信號的測量。利用高精度HP3458A萬用表測量數(shù)據(jù),,利用式2中的校準系數(shù)KCAL得到ADC測量值和計算值,。
表3. 驗證½ FSR輸入信號對應的測量結(jié)果
Generator | Generator | MAX11040 | Calculation | Verr | Requirements |
Nominal signal (½ FSR) | VTR_m - signal measured by HP3458A | VIN measured by ADC | VTR_C = VIN × KCAL | (VTR_M - VTR_C) × (100/VTR_C) | IEC 62053 |
(VP-P) | (VRMS) | (VRMS) | (VRMS) | (%) | (%) |
Channel 1: ±5.000 | 3.4892 | 0.74259 | 3.490126 | -0.026544 | 0.2 |
Channel 2: ±2.500 | 1.7471 | 0.7307 | 1.747384 | -0.016265 | 0.2 |
表3中的VTR_M表示輸入½ FSR信號時的測量值,而VTR_C表示基于MAX11040測量值和KCAL處理,、計算得到的數(shù)值,。
結(jié)果顯示調(diào)理后的電路測量誤差VERR低于0.03%,可輕松滿足EU IEC 62053規(guī)范要求的0.2%精度指標,。
圖4. MAX11040EVKIT GUI允許用戶方便地設置各種測量條件:12.8ksps、256采樣點/周期和1024次轉(zhuǎn)換,。此外,,GUI的計算部分提供了一個進行快速工程運算的便捷工具。
測量結(jié)果也可以通過USB口傳送到PC端,,從而利用強大的(而且免費)的Excel進行詳細的數(shù)據(jù)分析,。
結(jié)論
MAX11040等高性能多通道同時采樣、Σ-Δ ADC非常適合工業(yè)應用的數(shù)據(jù)采集系統(tǒng),。這些新型ADC設計能夠提供高達117dB的動態(tài)范圍,,有效改善積分非線性和微分非線性,采樣速率高達64ksps,。選擇適當?shù)男盘栒{(diào)理電路,,MAX11040能夠滿足甚至優(yōu)于高級“智能”電網(wǎng)監(jiān)控系統(tǒng)的指標要求¹。