《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計應(yīng)用 > 單片機硬件參數(shù)設(shè)計解析
單片機硬件參數(shù)設(shè)計解析
電子元器件應(yīng)用
摘要: 隨著目前新技術(shù),、新工藝的不斷出現(xiàn),,高速單片機的應(yīng)用越來越廣,,對硬件的可靠性問題便提出更高的要求。本文將從硬件的可靠性角度描述高速單片機設(shè)計的關(guān)鍵點,。
Abstract:
Key words :

摘要:隨著目前新技術(shù),、新工藝的不斷出現(xiàn),,高速單片機的應(yīng)用越來越廣,,對硬件的可靠性問題便提出更高的要求。本文將從硬件的可靠性角度描述高速單片機設(shè)計的關(guān)鍵點,。
關(guān)鍵詞:高速單片機 可靠性 特性阻抗 SI PI EMC 熱設(shè)計


引 言
  隨著單片機的頻率和集成度,、單位面積的功率及數(shù)字信號速度的不斷提高,而信號的幅度卻不斷降低,,原先設(shè)計好的,、使用很穩(wěn)定的單片機系統(tǒng),現(xiàn)在可能出現(xiàn)莫名其妙的錯誤,,分析原因,,又找不出問題所在。另外,,由于市場的需求,,產(chǎn)品需要采用高速單片機來實現(xiàn),設(shè)計人員如何快速掌握高速設(shè)計呢?

硬件設(shè)計包括邏輯設(shè)計和可靠性的設(shè)計,。邏輯設(shè)計實現(xiàn)功能,。硬件設(shè)計工程師可以直接通過驗證功能是否實現(xiàn),來判定是否滿足需求,。這方面的資料相當(dāng)多,,這里就不敘述了,。硬件可靠性設(shè)計,,主要表現(xiàn)在電氣、熱等關(guān)鍵參數(shù)上,。我將這些歸納為特性阻抗,、SI、PI,、EMC,、熱設(shè)計等5個部分。

1 特性阻抗

近年來,,在數(shù)字信號速度日漸增快的情況下,,在印制板的布線時,還應(yīng)考慮電磁波和有關(guān)方波傳播的問題,。這樣,,原來簡單的導(dǎo)線,逐漸轉(zhuǎn)變成高頻與高速類的復(fù)雜傳輸線了,。

在高頻情況下,,印制板(PCB)上傳輸信號的銅導(dǎo)線可被視為由一連串等效電阻及一并聯(lián)電感所組合而成的傳導(dǎo)線路,,如圖1所示。只考慮雜散分布的串聯(lián)電感和并聯(lián)電容的效應(yīng),,會得到以下公式:

式中Z0即特性阻抗,,單位為Ω。
PCB的特性阻抗Z0與PCB設(shè)計中布局和走線方式密切相關(guān),。影響PCB走線特性阻抗的因素主要有:銅線的寬度和厚度,、介質(zhì)的介電常數(shù)和厚度、焊盤的厚度,、地線的路徑,、周邊的走線等。

在PCB的特性阻抗設(shè)計中,,微帶線結(jié)構(gòu)是最受歡迎的,,因而得到最廣泛的推廣與應(yīng)用。最常使用的微帶線結(jié)構(gòu)有4種:表面微帶線(surface microstrip),、嵌入式微帶線(embedded microstrip),、帶狀線(stripline)、雙帶線(dual-stripline),。下面只說明表面微帶線結(jié)構(gòu),,其它幾種可參考相關(guān)資料。表面微帶線模型結(jié)構(gòu)如圖2所示,。

    Z0的計算公式如下:

對于差分信號,,其特性阻抗Zdiff修正公式如下:

公式中:

——PCB基材的介電常數(shù);

b——PCB傳輸導(dǎo)線線寬,;

d1——PCB傳輸導(dǎo)線線厚,;

d2——PCB介質(zhì)層厚度;

D——差分線對線邊沿之間的線距,。

從公式中可以看出,,特性阻抗主要由、b,、d1,、d2決定。通過控制以上4個參數(shù),,可以得到相應(yīng)的特性阻抗,。

 

2 信號完整性(SI)

SI是指信號在電路中以正確的時序和電壓作出響應(yīng)的能力。如果電路中的信號能夠以要求的時序,、持續(xù)時間和電壓幅度到達IC,,則該電路具有較好的信號完整性。反之,,當(dāng)信號不能正常響應(yīng)時,,就出現(xiàn)了信號完整性問題,。從廣義上講,信號完整性問題主要表現(xiàn)為5個方面:延遲,、反射,、串?dāng)_、同步切換噪聲和電磁兼容性,。

延遲是指信號在PCB板的導(dǎo)線上以有限的速度傳輸,,信號從發(fā)送端發(fā)出到達接收端,其間存在一個傳輸延遲,。信號的延遲會對系統(tǒng)的時序產(chǎn)生影響,。在高速數(shù)字系統(tǒng)中,傳輸延遲主要取決于導(dǎo)線的長度和導(dǎo)線周圍介質(zhì)的介電常數(shù),。

當(dāng)PCB板上導(dǎo)線(高速數(shù)字系統(tǒng)中稱為傳輸線)的特征阻抗與負載阻抗不匹配時,,信號到達接收端后有一部分能量將沿著傳輸線反射回去,使信號波形發(fā)生畸變,,甚至出現(xiàn)信號的過沖和下沖,。如果信號在傳輸線上來回反射,就會產(chǎn)生振鈴和環(huán)繞振蕩,。

由于PCB板上的任何兩個器件或?qū)Ь€之間都存在互容和互感,,因此,當(dāng)一個器件或一根導(dǎo)線上的信號發(fā)生變化時,,其變化會通過互容和互感影響其它器件或?qū)Ь€,,即串?dāng)_。串?dāng)_的強度取決于器件及導(dǎo)線的幾何尺寸和相互距離,。

信號質(zhì)量表現(xiàn)為幾個方面,。對于大家熟知的頻率、周期,、占空比,、過沖,、振鈴,、上升時間、下降時間等,,在此就不作詳細介紹了,。下面主要介紹幾個重要概念。

①高電平時間(high time),,指在一個正脈沖中高于Vih_min部分的時間,。

②低電平時間(low time),指在一個負脈沖中低于Vil_max部分的時間,,如圖3所示,。

③建立時間(setup time),,指一個輸入信號(input signal)在參考信號(reference signal)到達指定的轉(zhuǎn)換前必須保持穩(wěn)定的最短時間。

④保持時間(hold time),,是數(shù)據(jù)在參考引腳經(jīng)過指定的轉(zhuǎn)換后,,必須穩(wěn)定的最短時間,如圖4所示,。

⑤建立時間裕量(setup argin),,指所設(shè)計系統(tǒng)的建立時間與接收端芯片所要求的最小建立時間的差值。

⑥保持時間裕量(hold argin),,指所設(shè)計系統(tǒng)的保持時間與接收端芯片所要求的最小保持時間之間的差值,。

⑦時鐘偏移(clock skew),指不同的接收設(shè)備接收到同一時鐘驅(qū)動輸出之間的時間差,。

⑧Tco(time clock to output,,時鐘延遲),是一個定義包括一切設(shè)備延遲的參數(shù),,即Tco=內(nèi)部邏輯延遲 (internal logic delay) + 緩沖器延遲(buffer delay),。

⑨最大經(jīng)歷時間(Tflightmax),即final switch delay,,指在上升沿,,到達高閾值電壓的時間,并保持高電平之上,,減去驅(qū)動所需的緩沖延遲,。

⑩最小經(jīng)歷時間(Tflightmin),即first settle delay,,指在上升沿,,到達低閾值電壓的時間,減去驅(qū)動所需的緩沖延遲,。

 

時鐘抖動(clock jitter),,是由每個時鐘周期之間不穩(wěn)定性抖動而引起的。一般由于PLL在時鐘驅(qū)動時的不穩(wěn)定性引起,,同時,,時鐘抖動引起了有效時鐘周期的減小。

串?dāng)_(crosstalk),。鄰近的兩根信號線,,當(dāng)其中的一根信號線上的電流變化時(稱為aggressor,攻擊者),,由于感應(yīng)電流的影響,,另外一根信號線上的電流也將引起變化(稱為victim,受害者),。

SI是個系統(tǒng)問題,,必須用系統(tǒng)觀點來看,。以下是將問題的分解。

◆ 傳輸線效應(yīng)分析:阻抗,、損耗,、回流……

◆ 反射分析:過沖、振鈴……

◆ 時序分析:延時,、抖動,、SKEW……

◆ 串?dāng)_分析

◆ 噪聲分析:SSN、地彈,、電源下陷……


◆ PI設(shè)計:確定如何選擇電容,、電容如何放置、PCB合適疊層方式……
◆ PCB,、器件的寄生參數(shù)影響分析

◆ 端接技術(shù)等

3 電源完整性PI

PI的提出,,源于當(dāng)不考慮電源的影響下基于布線和器件模型而進行SI分析時所帶來的巨大誤差,相關(guān)概念如下,。

◆ 電子噪聲,,指電子線路中某些元器件產(chǎn)生的隨機起伏的電信號。

◆ 地彈噪聲,。當(dāng)PCB板上的眾多數(shù)字信號同步進行切換時(如CPU的數(shù)據(jù)總線,、地址總線等),由于電源線和地線上存在阻抗,,會產(chǎn)生同步切換噪聲,,在地線上還會出現(xiàn)地平面反彈噪聲(簡稱地彈)。SSN和地彈的強度也取決于集成電路的I/O特性,、PCB板電源層和地平面層的阻抗以及高速器件在PCB板上的布局和布線方式,。負載電容的增大、負載電阻的減小,、地電感的增大,、同時開關(guān)器件數(shù)目的增加均會導(dǎo)致地彈的增大。

◆ 回流噪聲,。只有構(gòu)成回路才有電流的流動,,整個電路才能工作。這樣,,每條信號線上的電流勢必要找一個路徑,,以從末端回到源端,。一般會選擇與之相近的平面,。由于地電平面(包括電源和地)分割,例如地層被分割為數(shù)字地,、模擬地,、屏蔽地等,,當(dāng)數(shù)字信號走到模擬地線區(qū)域時,就會產(chǎn)生地平面回流噪聲,。

◆ 斷點,,是信號線上阻抗突然改變的點。如用過孔(via)將信號輸送到板子的另一側(cè),,板間的垂直金屬部分是不可控阻抗,,這樣的部分越多,線上不可控阻抗的總量就越大,。這會增大反射,。還有,從水平方向變?yōu)榇怪狈较虻?0°的拐點是一個斷點,,會產(chǎn)生反射,。如果這樣的過孔不能避免,那么盡量減少它的出現(xiàn),。

在一定程度上,,我們只能減弱因電源不完整帶來的系列不良結(jié)果,一般會從降低信號線的串繞,、加去耦電容,、盡量提供完整的接地層等措施著手。

4 EMC

EMC包括電磁干擾和電磁抗干擾兩個部分,。

一般數(shù)字電路EMS能力較強,,但是EMI較大。電磁兼容技術(shù)的控制干擾,,在策略上采用了主動預(yù)防,、整體規(guī)劃和“對抗”與“疏導(dǎo)”相結(jié)合的方針。

主要的EMC設(shè)計規(guī)則有:

① 20H規(guī)則,。PowerPlane(電源平面)板邊緣小于其與GroundPlane(地平面)間距的20倍,。

② 接地面處理。接地平面具有電磁學(xué)上映象平面(ImagePlane) 的作用,。若信號線平行相鄰于接地面,,可產(chǎn)生映像電流抵消信號電流所造成的輻射場。PCB上的信號線會與相鄰的接地平面形成微波工程中常見的Micro-strip Line(微帶線)或Strip Line(帶狀線)結(jié)構(gòu),,電磁場會集中在PCB的介質(zhì)層中,,減低電磁輻射。

因為,,Strip Line的EMI性能要比Micro-strip Line的性能好,。所以,一些輻射較大的走線,如時鐘線等,,最好走成Strip Line結(jié)構(gòu),。

③ 混合信號PCB的分區(qū)設(shè)計。第一個原則是盡可能減小電流環(huán)路的面積,;第二個原則是系統(tǒng)只采用一個參考面,。相反,如果系統(tǒng)存在兩個參考面,,就可能形成一個偶極天線,;而如果信號不能通過盡可能小的環(huán)路返回,就可能形成一個大的環(huán)狀天線,。對于實在必須跨區(qū)的情況,,需要通過,在兩區(qū)之間加連接高頻電容等技術(shù),。

④ 通過PCB分層堆疊設(shè)計控制EMI輻射,。PCB分層堆疊在控制EMI輻射中的作用和設(shè)計技巧,通過合適的疊層也可以降低EMI,。

從信號走線來看,,好的分層策略應(yīng)該是把所有的信號走線放在一層或若干層,這些層緊挨著電源層或接地層,。對于電源,,好的分層策略應(yīng)該是電源層與接地層相鄰,且電源層與接地層的距離盡可能小,,這就是我們所講的“分層"策略,。

⑤ 降低EMI的機箱設(shè)計。實際的機箱屏蔽體由于制造,、裝配,、維修、散熱及觀察要求,,其上一般都開有形狀各異,、尺寸不同的孔縫,必須采取措施來抑制孔縫的電磁泄漏,。一般來說,,孔縫泄漏量的大小主要取決于孔的面積、孔截面上的最大線性尺寸,、頻率及孔的深度,。

⑥ 其它技術(shù)。在IC的電源引腳附近合理地安置適當(dāng)容量的電容,,可使IC輸出電壓的跳變來得更快,。然而,,問題并非到此為止。由于電容呈有限頻率響應(yīng)的特性,,這使得電容無法在全頻帶上生成干凈地驅(qū)動IC輸出所需要的諧波功率,。除此之外,,電源匯流排上形成的瞬態(tài)電壓在去耦路徑的電感兩端會形成電壓降,,這些瞬態(tài)電壓就是主要的共模EMI干擾源。為了控制共模EMI,,電源層要有助於去耦和具有足夠低的電感,,這個電源層必須是一個設(shè)計相當(dāng)好的電源層的配對。問題的答案取決于電源的分層,、層間的材料以及工作頻率(即IC上升時間的函數(shù)),。通常,電源分層的間距是0.5mm(6mil),,夾層是FR4材料,,則每平方英寸電源層的等效電容約為75pF。顯然,,層間距越小電容越大,。

5 熱設(shè)計

電子元件密度比以前高了很多,同時功率密度也相應(yīng)有了增加,。由于電子元器件的性能會隨溫度發(fā)生變化,,溫度越高其電氣性能會越低。

(1)數(shù)字電路散熱原理

半導(dǎo)體器件產(chǎn)生的熱量來源于芯片的功耗,,熱量的累積必定導(dǎo)致半導(dǎo)體結(jié)點溫度的升高,。隨著結(jié)點溫度的提高,半導(dǎo)體器件性能將會下降,,因此芯片廠家都規(guī)定了半導(dǎo)體器件的結(jié)點溫度,。在高速電路中,芯片的功耗較大,,在正常條件下的散熱不能保證芯片的結(jié)點溫度不超過允許工作溫度,,因此需要考慮芯片的散熱問題。

在通常條件下,,熱量的傳遞通過傳導(dǎo),、對流、輻射3種方式進行,。

散熱時需要考慮3種傳熱方式,。例如使用導(dǎo)熱率好的材料,如銅,、鋁及其合金做導(dǎo)熱材料,,通過增加風(fēng)扇來加強對流,,通過材料處理來增強輻射能力等。

簡單熱量傳遞模型:熱量分析中引入一個熱阻參數(shù),,類似于電路中的電阻,。如果電路中的電阻計算公式為R=ΔE/I,則對應(yīng)的熱阻對應(yīng)公式為R=Δt/P(P表示功耗,,單位W,;Δt表示溫差,單位℃),。熱阻的單位為℃/W,,表示功率增加1W時所引起的溫升??紤]集成芯片的熱量傳遞,,可以使用圖5描述的溫度計算模型。

由上所述,,可推導(dǎo)出

Tc=Tj-P× RJC

也就是說,,當(dāng)Tc實測值小于根據(jù)數(shù)據(jù)手冊所提供數(shù)據(jù)計算出的最大值時,芯片可正常工作,。

(2)散熱處理

為了保證芯片能夠正常工作,,必須使Tj不超過芯片廠家提供的允許溫度。根據(jù)Tj=Ta+P×R可知,,如果環(huán)境溫度降低,,或者功耗減少、熱阻降低等都能夠使Tj降低,。實際使用中,,對環(huán)境溫度的要求可能比較苛刻,功耗降低只能依靠芯片廠家技術(shù),,所以為了保證芯片的正常工作,,設(shè)計人員只能在降低熱阻方面考慮。


結(jié) 語
以上提到的高速單片機設(shè)計思想和方法,,目前已經(jīng)在國外的公司得到實踐和發(fā)展,,但是國內(nèi)這方面的研究和實踐還很少。該設(shè)計思想在我們公司實踐,、摸索,,提高了產(chǎn)品可靠性。在這里推薦給各位同行,,期望共同探討,。
 

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載,。