在3.1至10.6GHz超寬帶(UWB)頻率范圍內(nèi)的應(yīng)用需要分?jǐn)?shù)頻率帶寬較大的帶通濾波器,。美國(guó)聯(lián)邦通信委員會(huì)(FCC)取消了中心頻率為6.85GHz,、分?jǐn)?shù)帶寬(FBW)約為110%的UWB應(yīng)用,從而為低功耗的商業(yè)UWB應(yīng)用打開(kāi)了3.1到10.6GHz的大門,。
由于矩形槽可以用來(lái)精確調(diào)諧諧振器頻率,因此在具有矩形槽的多模諧振器(MMR)基礎(chǔ)上實(shí)現(xiàn)的微帶帶通濾波器,,可以達(dá)到反射損耗大于10dB,、插入損耗小于1.5dB、群延遲變化小于0.3ns的通帶性能,。據(jù)最初的報(bào)道,,使用帶階躍阻抗結(jié)構(gòu)的MMR時(shí),會(huì)將前三個(gè)諧振模作為覆蓋整個(gè)UWB頻率范圍的帶通濾波器的一部分,。
在參考文獻(xiàn)1中描述了一種采用背孔式微帶線MMR的UWB濾波器,,這種濾波器具有較低的帶內(nèi)插入損耗,反射損耗為8dB,。建議的濾波器設(shè)計(jì)使用MMR技術(shù)后,,將帶內(nèi)反射損耗提高到了10dB,帶內(nèi)插入損耗則降低至2dB,。帶兩個(gè)短的開(kāi)路分支的小型濾波器設(shè)計(jì),,可實(shí)現(xiàn)超寬上截止頻帶性能。根據(jù)參考文獻(xiàn)3中的描述,,這種濾波器測(cè)得的低端3dB截止頻率為3.4GHz,,高端為10.3GHz。即使所有上述UWB濾波器在寬UWB通帶上表現(xiàn)出了令人滿意的性能水平,,但對(duì)于UWB頻率范圍內(nèi)的反射損耗和插入損耗性能水平的要求總是在不斷提高,,而這種性能的提高可以利用改進(jìn)的MMR技術(shù)來(lái)實(shí)現(xiàn)。
在改進(jìn)的MMR UWB帶通濾波器設(shè)計(jì)中,,前三個(gè)諧振模經(jīng)過(guò)構(gòu)建可以用來(lái)實(shí)現(xiàn)在整個(gè)通帶內(nèi)都具有低反射損耗的5個(gè)傳輸極點(diǎn),。借助早期的MMR濾波器設(shè)計(jì)可以對(duì)當(dāng)前設(shè)計(jì)作出修改,將前三個(gè)諧振模進(jìn)行重新分配,,使之靠近目標(biāo)UWB通帶的低端,、中心和高端,。
與此同時(shí),輸入/輸出平行耦合的孤立區(qū)的耦合程度,,在目前的MMR設(shè)計(jì)中有了很大的提高,,從而顯著提升了通帶性能,這從計(jì)算機(jī)輔助工程(CAE)仿真和對(duì)原型濾波器的測(cè)量結(jié)果可以看出,。CAE仿真預(yù)測(cè)的所有參數(shù)(包括插損/反射損耗和群時(shí)延),,都在包括UWB通帶在內(nèi)的寬頻范圍內(nèi)得到了實(shí)驗(yàn)證實(shí)。
建議的UWB濾波器由一個(gè)位于中心區(qū)域的不均勻MMR和分別位于左區(qū)與右區(qū)的兩根相同耦合線組成,。地線層上的背孔,,不僅用于增強(qiáng)耦合線的耦合程度,而且用于實(shí)現(xiàn)MMR中從側(cè)邊到中心區(qū)域的特定阻抗比,。眾所周知,,可以通過(guò)修改這三個(gè)區(qū)域的阻抗比或MMR的長(zhǎng)度,來(lái)調(diào)整UWB通帶內(nèi)的頻散特性,。
圖1顯示了新的MMR微帶帶通濾波器的拓?fù)浼捌潢P(guān)鍵參數(shù),,單位是毫米。與參考文獻(xiàn)1和2中的MMR設(shè)計(jì)相反,,這種UWB帶通濾波器使用的是平行耦合的雙線結(jié)構(gòu),。與傳統(tǒng)平行耦合線相比,這種耦合結(jié)構(gòu)有望增強(qiáng)輸入/輸出端口與MMR諧振器之間的耦合程度,,從而增加UWB濾波器的S21幅度和通帶寬度,。此外,像圖1所示那樣在MMR中開(kāi)槽,,將形成一種新的結(jié)構(gòu),,并提供了用于精確調(diào)整UWB濾波器中三個(gè)諧振器的新途徑。通過(guò)整合這些結(jié)構(gòu),,就可以完成具有良好通帶性能的UWB濾波器的設(shè)計(jì)和表征,。
圖1:基于MMR的UWB帶通濾波器的拓?fù)鋱D。
MMR中的凹槽用于輕度調(diào)整頻散和改進(jìn)帶通性能,。通過(guò)改變凹槽的長(zhǎng)度,、寬度和位置,UWB通帶(3.1到10.6GHz)內(nèi)的前三個(gè)諧振頻率將得到重新分配,,從而獲得更好的濾波器性能,。圖2(c)顯示了圖2(a)和圖2(b)分別在帶凹槽和不帶凹槽的情況下頻散的變化。圖中清楚地表明,,通過(guò)在MMR中開(kāi)槽,,3.1-10.6GHz中的三個(gè)諧振頻率得到了輕度調(diào)整。頻-散的變化與參數(shù)L、W和d的關(guān)系分別見(jiàn)圖3(a),、3(b)和圖3(c),,其中L是凹槽的長(zhǎng)度,W是凹槽的寬度,,d是凹槽和MMR中心部分之間的距離,,參見(jiàn)圖1。圖3給出了在固定d=0.3mm,、W=1.2mm以及L如圖3(a)所示變化的弱耦合條件下仿真得到的S21幅度,,在固定d=0.13mm、L=13.6mm以及W如圖3(b)所示變化的弱耦合條件下仿真得到的S21幅度,,和在固定L=13.6mm,、W=1.2mm以及d如圖3(c)所示變化的弱耦合條件下仿真得到的S21幅度。
圖2:圖(c)比較了采用(a)帶凹槽和(b)不帶凹槽的MMR設(shè)計(jì)時(shí)的頻散變化,。
對(duì)比圖3中的曲線我們可以明顯地發(fā)現(xiàn),,參數(shù)W在調(diào)整三個(gè)諧振頻率中發(fā)揮的作用要比L和d大。圖3中的三種圖形表明,,MMR中的凹槽可以輕度調(diào)整頻散并提高UWB通帶濾波器性能,,雖然頻散的變化沒(méi)有參考文獻(xiàn)4中那么大。值得我們注意的是,,在MMR中應(yīng)用凹槽這種方式對(duì)其它濾波器設(shè)計(jì)也有用。
圖3:這些圖給出了MMR濾波器(a)在固定d=0.3mm,、W=1.2mm和改變L的弱耦合條件下仿真得到的S21幅度,、(b)在固定d=0.13mm、L=13.6mm和改變W的弱耦合條件下仿真得到的S21幅度,、(c)在固定L=13.6mm,、W=1.2mm和改變d的弱耦合條件下仿真得到的S21幅度。
在對(duì)某些方面的輕度調(diào)整確定后,,就可以開(kāi)始對(duì)UWB MMR帶通濾波器進(jìn)行設(shè)計(jì),、仿真和測(cè)量。圖4給出了所建議的UWB濾波器的頂部和底部視圖,。在設(shè)計(jì)中使用商用HFSS 11.0軟件進(jìn)行了仿真和優(yōu)化,。該UWB濾波器制造所用的基板的介電常數(shù)為2.2,厚度為0.787mm,。濾波器性能采用安杰倫公司提供的型號(hào)為N5230A的矢量網(wǎng)絡(luò)分析儀(VNA)進(jìn)行測(cè)量,。
圖4:這兩張圖顯示了基于MMR的UWB帶通濾波器的頂部(a)和底部(b)。
圖5對(duì)預(yù)測(cè)和測(cè)量的S21(插損)和S11(反射損耗)幅度的頻率響應(yīng)以及群延遲進(jìn)行了比較,。預(yù)測(cè)的S參數(shù)證實(shí),,新設(shè)計(jì)的UWB濾波器在包括UWB通帶在內(nèi)的寬范圍頻率內(nèi)(3.9-10.7 GHz)具有較高的反射損耗(≥11dB)和較低的插入損耗(<0.8dB=。測(cè)量結(jié)果也表明了良好的反射損耗(≥10dB)和較低的插入損耗(≥1.5dB),,其中包括濾波器中使用的SMA連接器損耗,。測(cè)量得到的群延遲在0.15ns和0.45nm之間變化,,最大變化量是0.3ns,這些數(shù)據(jù)表明建議的UWB濾波器具有良好的線性度,。在通過(guò)14GHz的上截止頻帶中的衰耗≥20dB,。
圖5:這些圖對(duì)UWB帶通濾波器的(a)S21與S11以及(b)群時(shí)延的測(cè)量和仿真性能進(jìn)行了比較。
總之,,我們成功地采用具有雙平行耦合線和矩形槽的均勻MMR實(shí)現(xiàn)了UWB微帶帶通濾波器設(shè)計(jì),。通過(guò)正確調(diào)整矩形槽的長(zhǎng)度(L)、寬度(W)和位置(d),,可以重新分配三個(gè)諧振頻率,,從而使UWB濾波器取得更好的通帶性能,包括<1.5dB的插入損耗和≥10dB的反射損耗,,以及小于0.3ns的群延遲變化,。測(cè)量得到的性能指標(biāo)與仿真結(jié)果非常接近。
參考文獻(xiàn):
1. H. Wang and L. Zhu,, “Aperture-Backed Microstrip Line Multiple-Mode Resonator for Design of a Novel UWB Bandpass Filter,,” 2005 Asia-Pacific Microwave Conference, Vol. 4,, 2005.
2. L. Zhu and S. Sun,, “Ultra-Wideband (UWB) Bandpass Filters Using Multiple-Mode Resonator,” IEEE Microwave and Wireless Components Letters,, Vol. 15,, No. 11, November 2005,, pp. 796-798.
3. S. W. Wong and L. Zhu,, “Miniaturization of Triple-Mode UWB Bandpass Filters with Extended Upper-Stopband,” 2008 IEEE MTT-S International Microwave Workshop Series (IMWS) on Art of Miniaturizing RF and Microwave Passive Components,, December 2008,, pp. 102-105.
4. S. Sun and L. Zhu, “Multiple-Resonator-Based Bandpass Filters,,” IEEE Microwave Magazine,, Vol. 10, No.2,, April 2009,, pp. 88-98.
作者:W.CHENG, X.H.WANG,, Y.TUO,, Y.F.BAI, X.W.SHI