序言
無線技術(shù)的持續(xù)演進(jìn)發(fā)展,、全球無線用戶的激增,以及市場(chǎng)對(duì)更強(qiáng)大數(shù)據(jù)承載能力的需求,,全面催生了各種新標(biāo)準(zhǔn)的不斷涌現(xiàn),,如寬帶碼分多址 - 高速分組接入 (WCDMA-HSPA)、WCDMA-HSPA+ 以及長期演進(jìn)技術(shù) (LTE) 等?;跓o線服務(wù)網(wǎng)絡(luò)的數(shù)據(jù)使用呈指數(shù)級(jí)增長,,從而進(jìn)一步推動(dòng)了異構(gòu)網(wǎng)絡(luò)的出現(xiàn) —— 支持宏蜂窩title="基站" target="_blank">基站和小型蜂窩基站的分層網(wǎng)絡(luò)部署方案。
隨著 LTE 部署成為現(xiàn)實(shí),,運(yùn)營商紛紛熱衷于采用可持續(xù)降低網(wǎng)絡(luò)成本、同時(shí)還能維持并提升服務(wù)質(zhì)量的“片上系統(tǒng)”(SoC) 架構(gòu),。要支持向 LTE 的成功過渡,,需要在數(shù)字信號(hào)處理器 (DSP) 的設(shè)計(jì)方面實(shí)現(xiàn)一系列技術(shù)創(chuàng)新。德州儀器 (TI) 名為“KeyStone”的多內(nèi)核 SoC 架構(gòu)不僅功能強(qiáng)大而且極富創(chuàng)新性,,能夠有效支持 WCDMA 與 LTE,,進(jìn)而降低成本。KeyStone 多內(nèi)核架構(gòu)可實(shí)現(xiàn)具有專用 WCDMA與 LTE加速器的,、名符其實(shí)的多標(biāo)準(zhǔn)(LET,、WCDMA)解決方案。本白皮書全面闡述了 TI KeyStone 多內(nèi)核架構(gòu)如何在 LTE 基站上實(shí)現(xiàn)第二層網(wǎng)絡(luò)和傳輸處理,。
隨著全球無線用戶數(shù)量的激增,,無線技術(shù)也在持續(xù)實(shí)現(xiàn)演進(jìn)發(fā)展。移動(dòng)數(shù)據(jù)使用量的新近增長,、層出不窮的新應(yīng)用以及互通互連的生活方式,,都需要移動(dòng)網(wǎng)絡(luò)提供強(qiáng)大的支持。對(duì)無線寬帶服務(wù)不斷增長的需求促使 3GPP 定義可同時(shí)為運(yùn)營商和終端用戶帶來諸多優(yōu)勢(shì)的 LTE 技術(shù)解決方案,,,,如不僅能提高容量、降低網(wǎng)絡(luò)復(fù)雜性,、降低開發(fā)與運(yùn)營成本,,而且最終還能顯著提升用戶體驗(yàn)。
名為演進(jìn)型 UMTS 陸地?zé)o線電廣播接入網(wǎng)絡(luò) (E-UTRAN) 的 LTE 無線電廣播接入網(wǎng)絡(luò)支持基于共享分組通道的移動(dòng)寬帶服務(wù),。這種方案不僅能夠提高頻譜效率和區(qū)段容量,,同時(shí)還能縮短用戶層的時(shí)延。以演進(jìn)型分組內(nèi)核 (EPC) 著稱的LTE 核心網(wǎng)絡(luò),,采用平坦型純 IP 架構(gòu)演進(jìn)支持 E-UTRAN,。借助平坦型 IP 架構(gòu),運(yùn)營商不但能夠減少資本支出的網(wǎng)絡(luò)組件數(shù),,同時(shí)還能縮短系統(tǒng)時(shí)延以支持最新應(yīng)用,,并演進(jìn)支持無線電廣播接入與核心網(wǎng)絡(luò)。
LTE 可支持靈活的通道帶寬 (1.2-20 MHz) 以及頻分雙工 (FDD) 與時(shí)分雙工 (TDD) ,,以實(shí)現(xiàn) LTE 系統(tǒng)的靈活部署,。LTE 可為每一個(gè) 20 MHz 頻譜提供 100Mbps 的下行和 50Mbps 的上行速率。通過采用多天線信號(hào)處理技術(shù),LTE 能夠提供甚至更高的數(shù)據(jù)傳輸速率——下行高達(dá) 326.4 Mbps,。
根據(jù) Dell'Oro Group 調(diào)查顯示,,全球移動(dòng)用戶數(shù)有望從 2009 年的 48 億增至 2014 年的 72 億。這些用戶將進(jìn)一步推動(dòng)對(duì)更高數(shù)據(jù)速率的需求,,從而導(dǎo)致數(shù)據(jù)流量的激增,。集頻譜效率高、通道帶寬靈活性高與資本節(jié)約更顯著(因其采用平坦型純 IP 架構(gòu))等數(shù)大優(yōu)勢(shì)于一身的 LTE 將推進(jìn)運(yùn)營商部署 LTE 網(wǎng)絡(luò),。
2009 年到 2010 年間,,對(duì) LTE 的大規(guī)模試用與部署在全球范圍內(nèi)廣泛展開。有 25 家頂級(jí)運(yùn)營商承諾部署 LTE 系統(tǒng),,LTE 將呈現(xiàn)迅猛增長態(tài)勢(shì),。北美地區(qū)的主要運(yùn)營商將在 2010年 - 2011 年期間開始 LTE E-UTRAN NodeB (eNodeB) 的部署,但是 LTE 的市場(chǎng)增長將在 2012 年迎來新的轉(zhuǎn)折點(diǎn),,到時(shí)候歐洲和中國的運(yùn)營商也將開始部署 LTE,。根據(jù) Dell'O Group 的預(yù)測(cè),到 2014 年年底,,這一增長將使全球范圍內(nèi)的 LTE 用戶數(shù)量突破 1 億大關(guān),。
2.
圖 1 展示了包含名為 eNodeBs 基站的 E-UTRAN 架構(gòu)。eNodeBs 可提供針對(duì)用戶設(shè)備(UE,,移動(dòng))的用戶層與控制層協(xié)議終端 (Uu) ,,以及針對(duì)核心網(wǎng)絡(luò)的傳輸終端 (Iu)。
eNodeBs 不僅可通過 X2 接口相互連接,,而且也可通過 S1 接口連接至核心網(wǎng)絡(luò) EPC,,更確切地說還可通過 S1-MME 與移動(dòng)管理實(shí)體 (MME) 連接,以及通過 S1-U 接口與服務(wù)網(wǎng)關(guān) (S-GW) 連接,。
LTE 協(xié)議架構(gòu)
eNodeB 協(xié)議結(jié)構(gòu)包含兩個(gè)主要層:無線電廣播網(wǎng)絡(luò)層與傳輸網(wǎng)絡(luò)層,。在無線電廣播網(wǎng)絡(luò)層可以實(shí)現(xiàn)無線電廣播接口功能,而在傳輸網(wǎng)絡(luò)層則可實(shí)現(xiàn)標(biāo)準(zhǔn)的傳輸功能(例如以太網(wǎng)),??稍谌缦氯齻€(gè)協(xié)議層中實(shí)施無線電廣播接口:物理層(L1,PHY),;數(shù)據(jù)鏈路層 (L2),;以及網(wǎng)絡(luò)層 (L3),以向 UE 提供用戶層與控制層協(xié)議終端(Uu),。傳輸接口可提供針對(duì)核心網(wǎng)絡(luò)的隧道協(xié)議終端 (Iu),。
圖. 1 – E-UTRAN 架構(gòu)
3. L2 處理
L2 又被進(jìn)一步細(xì)分為媒體接入控制 (MAC)、無線電廣播鏈接控制 (RLC) 以及分組數(shù)據(jù)匯聚協(xié)議 (PDCP) 三個(gè)子層,。圖 2 與圖 3 對(duì) L2 子層的服務(wù)與功能進(jìn)行了描述,。
圖 2 – L2 架構(gòu)(下行)
圖 3 – L2 架構(gòu)(上行)
MAC 子層負(fù)責(zé)將同一傳輸通道上的多個(gè)邏輯通道(無線電廣播承載)多路復(fù)用至一個(gè)或多個(gè)邏輯通道,,并將傳輸通道上 PHY (L1) 中的MAC 服務(wù)數(shù)據(jù)單元 (SDU) 解多路復(fù)用至一個(gè)或多個(gè)邏輯通道。此外 MAC 子層還負(fù)責(zé)動(dòng)態(tài)調(diào)度活動(dòng),,包括在某個(gè) UE 的邏輯通道之間以及在 UE 之間進(jìn)行優(yōu)先處理,。
4
MAC 子層的其他功能包括,通過混合自動(dòng)中繼請(qǐng)求 (HARQ) 進(jìn)行糾錯(cuò),、傳輸格式選擇以及填充等功能,。L3 的無線電廣播資源控制 (RRC) 子層可控制 MAC 子層的配置。
RLC 子層的功能包括協(xié)議數(shù)據(jù)單元 (PDU) 傳輸,、通過 ARQ 糾錯(cuò),、RLC SDU 的級(jí)聯(lián)/分段/重組、重復(fù)檢測(cè)以及協(xié)議錯(cuò)誤檢測(cè)等,。L3 的 RRC子層可控制 RLC 子層的配置。配置后的 RLC 實(shí)體能夠以下列三種模式之一來執(zhí)行數(shù)據(jù)傳輸:透明模式 (TM),、非確認(rèn)模式 (UM) 以及確認(rèn)模式 (AM),。
PDCP 子層的功能包括:通過性能穩(wěn)定的報(bào)頭壓縮 (RoHC) 進(jìn)行報(bào)頭壓縮/解壓縮,用戶層與控制層數(shù)據(jù)傳輸,,用戶層和控制層數(shù)據(jù)的加密與解密,,控制層數(shù)據(jù)的完整性保護(hù)與完整性驗(yàn)證。
傳輸/回程處理
eNodeB 上的傳輸/回程協(xié)議??蓪?shí)現(xiàn)與核心網(wǎng)絡(luò)的通信,。eNodeB 可提供與EPC(MME 與 S-GW)接口相連的 S1 接口,以及與另一 eNodeB 接口相連的 X2 接口,。圖 4 和圖 5 對(duì) S1 用戶層與 S1 控制層的協(xié)議棧進(jìn)行了概括性描述,。
圖 4 – S1 用戶層
5
圖 5 – 控制層
傳輸協(xié)議棧能夠?yàn)榛爻蹋↖PSec 隧道)的用戶層數(shù)據(jù)提供安全終端 (GTP-U),同時(shí)為回程(SCTP) 的控制層數(shù)據(jù)提供 S1-AP/X2-AP 終端,。
TI KeyStone架構(gòu)
向 LTE 的升級(jí)給基站廠商及其供應(yīng)商帶來了全新的挑戰(zhàn),,他們需要在基站中實(shí)現(xiàn)更高的吞吐量、更高的性能及更大靈活性,。同樣,,LTE 也給基站廠商及供應(yīng)商帶來了觀念上的轉(zhuǎn)變,實(shí)現(xiàn)高頻譜效率需要更為復(fù)雜的數(shù)據(jù)處理與調(diào)度,。
數(shù)據(jù)層處理要求低時(shí)延和高吞吐量,,同時(shí)調(diào)度還需具備動(dòng)態(tài)與通道感知功能。支持 LTE 需要在基站的系統(tǒng)設(shè)計(jì)方面實(shí)現(xiàn)大量技術(shù)創(chuàng)新,。運(yùn)營商也紛紛對(duì)可持續(xù)降低其網(wǎng)絡(luò)成本的 SoC 架構(gòu)青睞有加,。
TI 名為“KeyStone”的多內(nèi)核 SoC 架構(gòu)不僅功能強(qiáng)大而且極富創(chuàng)新性,從而使基站廠商能夠從 LTE 等最新技術(shù)中顯著受益,。該架構(gòu)具備的眾多關(guān)鍵組件不僅可支持新的 LTE 功能,,同時(shí)也可用于提升 WCDMA 等現(xiàn)有無線技術(shù)的性價(jià)比,。圖 6 對(duì) KeyStone 架構(gòu)進(jìn)行了說明。
6
圖 6 – KeyStone 多內(nèi)核架構(gòu)
TI KeyStone多內(nèi)核架構(gòu)擁有高度的靈活性,,可同時(shí)集成定點(diǎn)與浮點(diǎn)運(yùn)算,、定向協(xié)處理與硬件加速,以及優(yōu)化的內(nèi)核間/組件間通信,。此架構(gòu)包括多個(gè) C66x DSP 內(nèi)核,,能夠支持高達(dá) 256 GMAC 的定點(diǎn)運(yùn)算性能以及 128GFLOP 的浮點(diǎn)運(yùn)算性能。另外,,此架構(gòu)還包括綜合而全面的連接功能層:TeraNet2 能夠與各種處理組件無縫互連,;多內(nèi)核共享內(nèi)存控制器能直接接入片上共享存儲(chǔ)器與外部第三代雙倍數(shù)據(jù)速率 (DDR3) 存儲(chǔ)器;多內(nèi)核導(dǎo)航器可助于管理整個(gè) SoC 架構(gòu)的通信,;以及 HyperLink 50 可與額外的協(xié)處理器或其他 TI SoC 等同伴器件實(shí)現(xiàn)互通互連,。部分此類關(guān)鍵處理組件可在 TI SoC 上實(shí)現(xiàn) LTE L2 與傳輸處理。
網(wǎng)絡(luò)協(xié)處理器
網(wǎng)絡(luò)協(xié)處理器是一款硬件加速器,,能夠減輕 DSP 內(nèi)核處理往返于核心網(wǎng)絡(luò)的以太網(wǎng)分組的工作量,。網(wǎng)絡(luò)協(xié)處理器包含 6 個(gè)微精簡指令集計(jì)算 (?RISC) 內(nèi)核,可加速自主的分組對(duì)分組處理,。網(wǎng)絡(luò)協(xié)處理器中的硬件模塊 —— 分組加速器與安全加速器可在傳輸網(wǎng)絡(luò)層以及深層無線電廣播網(wǎng)絡(luò)層實(shí)現(xiàn)快速通道處理,。
網(wǎng)絡(luò)協(xié)處理器在 LTE 傳輸/回程側(cè)的功能特性包括:以太網(wǎng)/IP/包絡(luò)安全有效負(fù)載 (ESP)/用戶數(shù)據(jù)報(bào)協(xié)議 (UDP) 報(bào)頭處理;循環(huán)冗余校驗(yàn) (CRC) 驗(yàn)證與生成,;IPSec 檢測(cè),、認(rèn)證、加密與解密,;通用路由包絡(luò) (GRE) 隧道,;基于 IPv4/6、傳輸控制協(xié)議 (TCP)/UDP,、SCTP 端口或 GTP-U 隧道數(shù)據(jù)包的分類與路由,;以及,基于 GTP-U 的服務(wù)質(zhì)量,。
7
在無線電廣播端,,網(wǎng)絡(luò)協(xié)處理器可支持基于特定配置文件匹配(例如根據(jù)【RFC】4995 批注請(qǐng)求的未壓縮大型數(shù)據(jù)包)與 3GPP 空中加密與解密的 RoHC。網(wǎng)絡(luò)協(xié)處理器支持每秒 150 萬個(gè)數(shù)據(jù)包(1Gbps 以太網(wǎng)線速)的處理速度,,帶相關(guān)安全上下文高速緩存的 64 條獨(dú)立 IPSec 隧道,,安全上下文在主存儲(chǔ)器中的 8,192 條IPSec 隧道,以及 8,192 個(gè) GTP-U 隧道 ID 查詢條目,。
多內(nèi)核導(dǎo)航器
多內(nèi)核導(dǎo)航器使用一套隊(duì)列管理器子系統(tǒng)與數(shù)據(jù)包直接存儲(chǔ)器存取 (DMA) 子系統(tǒng)來控制與實(shí)施設(shè)備內(nèi)的高速數(shù)據(jù)包移動(dòng),,從而能夠顯著降低設(shè)備 DSP 的傳統(tǒng)內(nèi)部通信負(fù)載,進(jìn)而提高整體系統(tǒng)性能,。多內(nèi)核導(dǎo)航器采用零復(fù)制方案在所有層進(jìn)行數(shù)據(jù)處理優(yōu)化,。多內(nèi)核導(dǎo)航器還支持分類與排序,、多內(nèi)核訪問存儲(chǔ)、存儲(chǔ)器管理,、分段與重組以及跨多個(gè)內(nèi)核或器件進(jìn)行交付,。
隊(duì)列管理器子系統(tǒng)包含 8,192 個(gè)硬件隊(duì)列,負(fù)責(zé)加速數(shù)據(jù)包隊(duì)列的管理,。在隊(duì)列管理器模塊的特定存儲(chǔ)器映射位置中寫入 32 位描述符地址,,即可將數(shù)據(jù)包添加至數(shù)據(jù)包隊(duì)列??赏ㄟ^讀取特定隊(duì)列相同地址來解除隊(duì)列,。
數(shù)據(jù)包 DMA 子系統(tǒng)包含 6 個(gè)數(shù)據(jù)包DMA,能夠在 Serial RapidIO ? (SRIO),、第二代空中接口 (AIF2) 以及數(shù)據(jù)包加速器等器件中為管理數(shù)據(jù)包緩沖器的基礎(chǔ)局端提供其它子系統(tǒng),。數(shù)據(jù)包 DMA是一個(gè)其數(shù)據(jù)目的地由一個(gè)目的地與自由描述符隊(duì)列索引(而非絕對(duì)存儲(chǔ)器地址)來決定的DMA。
快速通道處理與零復(fù)制方案
本部分探討了如何使用 TI KeyStone 架構(gòu)的關(guān)鍵處理組件來加速 LTE L2 網(wǎng)絡(luò)與傳輸處理,。上面介紹過的關(guān)鍵處理組件與 LTE L2 網(wǎng)絡(luò)及傳輸處理功能相關(guān),。這些組件實(shí)現(xiàn)的快速通道處理與零復(fù)制方案對(duì)于使用 LTE 實(shí)現(xiàn)低時(shí)延與高吞吐量性能非常重要。
傳輸層處理
圖 7 說明了如何使用網(wǎng)絡(luò)協(xié)處理器來加速 LTE 傳輸層的處理,。
圖 7 – 傳輸層處理的加速
8
在核心網(wǎng)絡(luò)端,數(shù)據(jù)包既可以通過具有內(nèi)置串行千兆介質(zhì)獨(dú)立接口 (SGMII) 的千兆以太網(wǎng)接口也可以通過 SRIO 接口進(jìn)入網(wǎng)絡(luò)協(xié)處理器,。數(shù)據(jù)包報(bào)頭首先經(jīng)過檢驗(yàn)和驗(yàn)證(例如以太網(wǎng) MAC 地址),,然后被傳輸至 IPSec 終端。經(jīng)過 IPSec 終端后,,網(wǎng)絡(luò)協(xié)處理器可檢驗(yàn)內(nèi)部報(bào)頭是否與 GTP-U/UDP/IP 相匹配,。隨即執(zhí)行 32 位 GTP-U ID 值的查找,并使用關(guān)聯(lián)的 QoS 與無線電廣播承載隊(duì)列 (RBQ) 對(duì)進(jìn)入的數(shù)據(jù)包進(jìn)行分類,。
RoHC 硬件可尋找描述匹配,。可將數(shù)據(jù)包路由至軟件RoHC處理(例如支持 RTP/UDP/IP報(bào)頭壓縮的 VoIP 數(shù)據(jù)包),,或在經(jīng)過 RoHC 硬件模塊(例如根據(jù) RFC4995 規(guī)定的未壓縮大型數(shù)據(jù)包)執(zhí)行最基本的“全硬件”處理后直接對(duì) 3GPP 進(jìn)行加密,。如果需要進(jìn)行軟件 RoHC 處理,在報(bào)頭壓縮后,,RoHC SW 模塊將數(shù)據(jù)包返回至網(wǎng)絡(luò)協(xié)處理器進(jìn)行 3GPP 空中加密,。加密后,數(shù)據(jù)包被路由至相關(guān)的無線廣播承載硬件隊(duì)列,,并在其中根據(jù)用于相似 QoS 數(shù)據(jù)包的算法來進(jìn)行調(diào)度,。向 RLC/MAC 模塊交付調(diào)度授權(quán)后,其根據(jù)需要從 RBQ 彈出的數(shù)據(jù)包可將這些授權(quán)傳遞至 RLC/MAC 協(xié)議棧,,并根據(jù)所授權(quán)的長度創(chuàng)建 MAC PDU,。
總之,,網(wǎng)絡(luò)協(xié)處理器可創(chuàng)建全加速的自主快速通道處理,在大多數(shù)情況下可完全終止 S1-U/X2 用戶層處理并為軟件運(yùn)行交付已分類的 RLC SDU,。
L2 數(shù)據(jù)層處理
多內(nèi)核導(dǎo)航器可為 LTE L2 數(shù)據(jù)(用戶)層處理提供數(shù)據(jù)包基礎(chǔ)局端,。數(shù)據(jù)包基礎(chǔ)局端可減輕從DSP 分類的工作量,從而為零復(fù)制操作提供硬件,,并為分段與重組提供硬件輔助,。二者結(jié)合起來即可大幅加速 LTE L2 數(shù)據(jù)層的處理,以獲得低時(shí)延,、高吞吐量性能,。
借助多內(nèi)核導(dǎo)航器,系統(tǒng)中的所有數(shù)據(jù)包都能夠滿足數(shù)據(jù)包DMA 接口規(guī)范要求,。數(shù)據(jù)包通常以圖 8 中的主機(jī)類型數(shù)據(jù)包格式表示,,其可實(shí)現(xiàn)靈活的存儲(chǔ)器使用模式。在這種格式下,,數(shù)據(jù)包通過鏈路緩沖器描述符 (BD) 來表述,。我們將第一個(gè) BD被稱為數(shù)據(jù)包描述符 (PD)。BD 具有指向儲(chǔ)存數(shù)據(jù)包有效負(fù)載的數(shù)據(jù)包緩沖器指針,。隊(duì)列管理器可與 PD 協(xié)同工作,。
圖 8 –主機(jī)類型的數(shù)據(jù)包格式
9
隊(duì)列管理器可在其內(nèi)部隨機(jī)訪問存儲(chǔ)器 (RAM) 中維護(hù)數(shù)據(jù)包鏈路信息,從而為實(shí)現(xiàn)超高效率的數(shù)據(jù)包壓入與彈出提供簡單的軟件應(yīng)用編程接口 (API),。此外,,其還可以確保隊(duì)列所有訪問的多核原子性,從而將多核軟件從門控與保護(hù)邏輯中釋放出來,。為了實(shí)現(xiàn)基于演進(jìn)數(shù)據(jù)包系統(tǒng) (EPS) QoS 的無線電廣播承載服務(wù)架構(gòu)目標(biāo),,相似服務(wù)等級(jí)的無線電廣播承載都要以硬件隊(duì)列集的形式出現(xiàn)。
零復(fù)制 RLC/MAC概念充分利用數(shù)據(jù)有效負(fù)載無需在 PHY 編碼器/解碼器的 PDCP 加密(解密)與 CRC 生成(或校驗(yàn))之間進(jìn)行處理的這一原理,。RLC 與 MAC 子層需要對(duì)數(shù)據(jù)包進(jìn)行匯聚/解匯聚,、分段/解分段、多路復(fù)用/解多路復(fù)用,,并需添加/移除控制信息與報(bào)頭,。想要在無需觸及有效負(fù)載數(shù)據(jù)(零復(fù)制)的情況下實(shí)現(xiàn)這一點(diǎn)可節(jié)約多達(dá) 90-95% 的處理周期時(shí)間。因此,,有效負(fù)載數(shù)據(jù)駐留在 DDR 中,,而且 L2 DSP 核心軟件是不可觸及的。
圖 9 – 下行數(shù)據(jù)流示例
10
例如,,在下行方向,,網(wǎng)絡(luò)協(xié)處理器數(shù)據(jù)包 DMA 進(jìn)程負(fù)責(zé)對(duì)數(shù)據(jù)包進(jìn)行接收、分段與分配,。RLC/MAC 軟件可在數(shù)據(jù)包描述符上運(yùn)行且無需訪問數(shù)據(jù)包有效負(fù)載,。其構(gòu)建的 MAC PDU 可被 SRIO 數(shù)據(jù)包 DMA 發(fā)出并反向重組成相鄰的存儲(chǔ)器,。
RLC/MAC 軟件使用數(shù)據(jù)包 API 庫在數(shù)據(jù)包內(nèi)運(yùn)行。該軟件可在數(shù)據(jù)包鏈中移除/插入描述符,,而且還能執(zhí)行數(shù)據(jù)包合并/分離操作,。在需要額外報(bào)頭時(shí)才用得上新的描述符。圖 9 以在網(wǎng)絡(luò)協(xié)處理器中執(zhí)行 PDCP (RoHC) 等所有快速通道處理為假定條件,,對(duì)下行數(shù)據(jù)流進(jìn)行了總結(jié),。
我們將所有指向預(yù)分配固定容量數(shù)據(jù)緩沖器的 BD 鏈接在一起,并將其放置在下行 (DL) 自由隊(duì)列中,。有多個(gè)自由隊(duì)列,,每一個(gè)隊(duì)列都對(duì)應(yīng)一個(gè)固定容量的緩沖器。當(dāng)來自網(wǎng)絡(luò)協(xié)處理器的數(shù)據(jù)包到達(dá)后,,網(wǎng)絡(luò)協(xié)處理器中的數(shù)據(jù)包 DMA 即從 DL 自由隊(duì)列中拉取 BD,,然后根據(jù) GTP-U ID/RBQ ID 映射對(duì)其進(jìn)行初始化和構(gòu)建 PD,并將 PD 壓入 RBQ,。DL 調(diào)度程序制定分配決策,,并向 RLC/MAC 進(jìn)程發(fā)布分配授權(quán)。
RLC 與 MAC 根據(jù)需要彈出授權(quán)的 RBQ,,然后將 PD 路由至 RLC 與MAC 隊(duì)列,。可能對(duì)數(shù)據(jù)包分段,,之后統(tǒng)一進(jìn)行多路復(fù)用并為其添加報(bào)頭,。數(shù)據(jù)包被保留在 RLC AM 重傳隊(duì)列中,同時(shí)對(duì)這些數(shù)據(jù)包克隆的復(fù)制版本(新的 PD 指向同一緩沖器)會(huì)向下流至可創(chuàng)建 MAC PDU 的協(xié)議棧,。當(dāng)傳輸就緒時(shí),數(shù)據(jù)包(用于已分配 UE 的 MAC PDU)在硬件 DL PHY 隊(duì)列中排隊(duì),。SRIO 中的數(shù)據(jù)包 DMA 從 DL PHY 隊(duì)列獲取數(shù)據(jù)包,,然后將它們傳輸至 LTE PHY 設(shè)備。傳輸開始后,,數(shù)據(jù)包進(jìn)入 HARQ 重傳隊(duì)列,,并且在成功交付后返回到 DL 自由隊(duì)列中。
調(diào)度層
對(duì)于調(diào)度層,,制定無線電廣播資源的分配時(shí)需將瞬時(shí)通道條件,、流量條件以及 QoS 等要求納入考慮范圍。因?yàn)橥ǖ琅c流量條件因時(shí)間和頻率的不同會(huì)有很大差異,,因此能否實(shí)現(xiàn)高效的帶寬利用率很大程度上取決于調(diào)度程序選擇最佳可能用戶(單個(gè)用戶或用戶對(duì))的能力,。
典型的調(diào)度算法可為單個(gè)或多個(gè)用戶模式構(gòu)建一組調(diào)度假定方案。調(diào)度程序然后根據(jù)鏈路的自適應(yīng)性為每種假定計(jì)算中標(biāo)率,。最終,,調(diào)度程序選出最佳假定方案并用以指導(dǎo)通道分配,。
調(diào)度算法的復(fù)雜性是由單個(gè)調(diào)度假定的計(jì)算成本以及需檢查的假定數(shù)目來決定的。信號(hào)處理密度型調(diào)度是一種高效率的動(dòng)態(tài)的通道感知型調(diào)度,。上行端的 FDD/TDD 調(diào)度程序需要計(jì)算足夠大的一套假定方案才能維持單個(gè)或多個(gè)用戶模式的調(diào)度增益,;同時(shí),帶下行鏈路波束成形 (downlink beam foaming) 的 TDD 調(diào)度程序要求的假定方案可假定定向傳輸與特征值分解 (EVD) 計(jì)算,。KeyStone 架構(gòu)中的 C66x DSP 內(nèi)核可支持專業(yè)的定點(diǎn)與浮點(diǎn)指令,,可實(shí)現(xiàn)高效的 EVD 計(jì)算,如矩陣相乘,、矩陣求逆以及大量用戶(數(shù)以百計(jì)甚至數(shù)以千計(jì))的高效搜索與篩選,。圖 10 提供了由 TI 仿真工具生成的調(diào)度程序可視化示例。此例使用 100 個(gè)無線電廣播資源模塊,,每個(gè)傳輸時(shí)間間隔(TTI,,1 毫秒)可生成 20 個(gè)分配授權(quán)。頻譜的較低位部分可用于半持續(xù)性語音流量,,而較高位部分則用于特定的數(shù)據(jù)流量,。
圖 10 – 調(diào)度程序可視化示例
結(jié)論
TI KeyStone 多內(nèi)核 SoC 架構(gòu)可提供一個(gè)低時(shí)延、高吞吐量的低成本高效率平臺(tái),,可支持適用于宏與小型蜂窩 eNodeB 系統(tǒng)的真正多標(biāo)準(zhǔn) (LTE,、WCDMA)解決方案。高吞吐量硬件加速器與數(shù)據(jù)包基礎(chǔ)局端加速可實(shí)現(xiàn)靈活且可擴(kuò)展的 LTE 部署,,同時(shí)還能最大限度地縮短 LTE 系統(tǒng)所需的時(shí)延,。在同一 DSP 中集成定點(diǎn)與浮點(diǎn)技術(shù)可實(shí)現(xiàn)優(yōu)化的矩陣處理最,以滿足 LTE要求的調(diào)度效率,。
根據(jù)對(duì)宏 LTE 系統(tǒng)的解決方案分析,,由于采用KeyStone 多內(nèi)核架構(gòu)實(shí)現(xiàn)快速通道與零復(fù)制處理,可以將 20 MHz,、2x2 多重輸入多重輸出 (MIMO) 以及 105 Mbps 下行與 52Mbps 上行數(shù)據(jù)率- L2 數(shù)據(jù)-以及傳輸層系統(tǒng)開銷降低10 到 15 倍,。借助針對(duì) LTE 調(diào)度程序運(yùn)行而優(yōu)化的 C66x DSP 定點(diǎn)與浮點(diǎn)指令,還可以使用更多高級(jí)調(diào)度算法,,從而將頻譜利用率提高 20%,。