本篇文章即是要探討聲頻系統(tǒng)在手機與PDA 之應(yīng)用與設(shè)計,,讓系統(tǒng)與研發(fā)人員設(shè)計出適合消費者的產(chǎn)品,。
無線可攜式電子產(chǎn)品應(yīng)用之考慮因素
以下列出在選擇聲頻功率放大器時必須考慮到的主要因素,。
較高的電源電壓抑制(Power Supply Rejection Ration;PSRR)
聲頻功率放大器必須具有較高的PSRR,可以避免受到電源與布線噪聲的干擾,。
快速的開關(guān)機(Fast turn on & off)
擁有較長的待機時間,,為手機或PDA 之基本訴求,AB 類聲頻放大器的效率約為50 至60 %,,D 類聲頻放大器的效率可達(dá)85 至90%,,不管使用何種聲頻放大器,為了節(jié)省功率消耗,,在不需要用到聲頻放大器時,,均需進入待機狀態(tài),然而當(dāng)一有聲音出現(xiàn)時,,聲頻放大器必須馬上進入開機狀態(tài),。
無「開關(guān)切換噪聲」(Click & Pop)聲
「開關(guān)切換噪聲」聲常出現(xiàn)于聲頻放大器進入開關(guān)機時,或是由待機回復(fù)至正常狀態(tài),,甚至是217Hz 手機通信訊號時,,手機或PDA 之使用者絕不會希望聽到擾人的噪音,將「開關(guān)切換噪聲」消除電路加入聲頻放大器的考慮中,,為重要的必備條件,。
較
低之工作電壓
為延長電池使用時間,更要求在低至1.8 伏特的條件下仍可進行作業(yè),。
低電流消耗與高效率
使用CMOS 制程之IC,,可降低電流消耗,有時需選擇D 類聲頻放大器,,目的在延長手機或個人數(shù)字處理器之工作時間,。
高輸出功率
在相同工作電壓下具有較高的輸出功率,亦即輸出訊號之?dāng)[幅越接近Vcc 與GND 時,,其輸出功率越高,。
較小的封裝(Micro SMD)
手機或個人數(shù)字處理器的外觀越來越小巧,使得IC 封裝技術(shù)越來越重要,,Micro SMD 為現(xiàn)今較常用到的封裝技術(shù),。
輸出功率的計算
單端式(Single-end )放大器如(圖一)所示,其增益為:(公式一) Gain=Rf/Ri Rf:回授阻抗Ri:輸入阻抗
(圖一) 單端式(Single-end) 放大器
由輸出功率=(VRMS)2/Rload,,VRMS=Vpeak /21/2,,因此單端式(Single-end )放大器輸出功率=(Vpeak)2/2Rload 。橋接式(BTL)放大器如(圖二)所示,,由兩個單端式(Single-end )放大器以相差180° 組成,,故其增益為(公式二) Gain=2Rf/Ri Rf:回授阻抗Ri:輸入阻抗由輸出功率=(VRMS)2/Rload,橋接式VRMS=2Vpeak/21/2,因此橋接式輸出功率=2(Vpeak)2/Rload=4×端式放大器輸出功率,。
圖二) 橋接式放大器與施加于喇叭正負(fù)端之波形
輸入與輸出耦合電容值的選擇
如圖一,,輸入阻抗與輸入耦合電容形成一高通濾波器,如欲得到較低的頻率響應(yīng),,則需選擇較大的電容值,,其關(guān)系可用以下公式表示:(公式三) fC =1/2∏(RI)(CI) fC:高通濾波截止頻率RI:輸入阻抗CI:輸入耦合電容值,此電容用以阻隔直流電壓并且將輸入訊號耦合至放大器的輸入端,。
在行動通訊系統(tǒng)中,,由于體積的限制,即使使用較大的輸入耦合電容值,,揚聲器也通常無法顯現(xiàn)出50Hz 以下的頻率響應(yīng),。因此,假設(shè)輸入阻抗為20K 奧姆,,只需之輸入耦合電容值大于0.19uF 即可,,在此狀況下,0.22uF 是最適當(dāng)選擇,。
對于輸出耦合電容值之設(shè)定而言,,同圖一中,如欲得到較佳的頻率響應(yīng),,電容值亦需選擇較大的容值,,其關(guān)系可用以下公式表示:(公式四) fC =1/2∏(RL)(CO) fC:高通濾波截止頻率RL:喇叭(耳機)之阻抗C輸出耦合電容值
例如,當(dāng)使用32 奧姆之耳機,,如希望得到50Hz 的頻率響應(yīng)時,,則需選擇99uF 的輸出耦合電容值,在此狀況下,,100uF 是最適當(dāng)選擇,。
散熱(Thermal)考慮
在設(shè)計單端式(Single-end )放大器或是橋接式(BTL)放大器時,功率消耗是主要考慮因素之一,,增加輸出功率至負(fù)載,,其內(nèi)部功率消耗亦跟著增加。
橋接式(BTL)放大器的功率消耗可用以下公式表示:(公式五) PDMAX_BTL =4(VDD)2/(2∏2RL) VDD:加于橋接式(BTL)放大器之電源電壓RL:負(fù)載阻抗
例如,,當(dāng)VDD =5V,、RL =8ohm 時,橋接式放大器的功率消耗為634mW ,,如負(fù)載阻抗改成32ohm 時,,其內(nèi)部功率消耗降低至158mW。
而單端式(Single-end )放大器的功率消耗可用以下公式表示:(公式六) PDMAX_SE=(VDD)2/(2∏2RL) VDD:加于單端式(Single-end )放大器之電源電壓RL:負(fù)載阻抗亦即單端式放大器的功率消耗僅為橋接式放大器的四分之一,。所有的功率消耗加起來除以IC 的熱阻(?JA)即是溫升,。
布線(Layout)考慮
設(shè)計人員在布在線,,有一些基本方針必須加以遵守,例如:
所有訊號線盡可能單點接地;
為避免兩訊號互相干擾,,應(yīng)避免平行走線,,而以90°跨過方式為之。
數(shù)字之電源,、接地應(yīng)和模擬之電源、接地分開,。
高速數(shù)字訊號走線應(yīng)遠(yuǎn)離模擬訊號走線,,亦不可置于模擬組件下方。
3D 強化立體聲在手機與PDA 之應(yīng)用
就大多數(shù)人的了解,,「3D 音效」既非單聲道,,亦非雙聲道, 它是一種聲頻的處理技術(shù),,使聆聽者在非實際的環(huán)境下,, 感覺到聲音發(fā)出的地點,這就必須非常講究揚聲器(喇叭)的放置位置與數(shù)目,。但是在手機與PDA 處理器中,,無法放置如此多的揚聲器,因此發(fā)展出以兩個揚聲器加上運用硬件或軟件的方式,,來仿真「3D 音效」,,亦即所謂的「3D 強化立體聲音效」(3D Enhancement)。(圖三)為3D 強化立體聲之聲頻次系統(tǒng)方塊圖,,用于立體聲手機或個人數(shù)字處理器中,,此聲頻次系統(tǒng)由下列幾個部份組成:
后級放大器:包括一立體聲揚聲器(喇叭)驅(qū)動器,一立體聲耳機驅(qū)動器,,一單聲道耳機放大器(earpiece),,和一用于免持聽筒之線路輸出(line out),例如汽車的免持聽筒電話輸出,。
音量控制:可提供分為32 級的音量控制,,而且左、右及單聲道的音量均可獨立控制,。
混音器:用來選擇輸出與輸入音源之關(guān)系,,可將立體聲及單聲道輸入傳送及混合一起,并將這些輸入分為16 個不同的輸出模式,,使系統(tǒng)設(shè)計工程師能夠靈活傳送及混合單聲道及立體聲聲頻訊號,,不會限定訊號只能傳送給立體聲揚聲器或立體聲耳機。
電源控制與「開關(guān)切換噪聲」消除電路,。
3D 強化立體聲,,以硬件的方式為之,。
使用I2C 兼容接口加以控制芯片的功能。
聲音在不同位置
傳至左右耳朵時,,會產(chǎn)生不同相位差,。利用此相位差原理和硬件方法,便可以仿真出3D 強化立體聲音效,,即使系統(tǒng)在體積或設(shè)備上受到限制,,而必須將左右喇叭擺放得很近時,仍然可以改善立體聲各高低聲部定位的種種問題,。
如圖三之3D 強化立體聲方塊圖所示,,一外接之電阻與電容電路用以控制3D 強化立體聲之音效,用兩個分別的電阻與電容電路來控制立體聲揚聲器與立體聲耳機,,如此可達(dá)到最佳之3D 強化立體聲效果,。
在此電阻與電容電路中,3D 強化立體聲效果的「量」是由R3D 電阻來設(shè)定的,,并且成反比關(guān)系,,C3D 電容用以設(shè)定3D 強化立體聲效果的3dB 低頻截止頻率,在低頻截止頻率以上方能顯現(xiàn)出3D 強化立體聲效果,,增加C3D 電容值將降低低頻截止頻率,,其關(guān)系可用以下公式表示。(公式七) f3D(-3dB)=1/2∏(R3D)(C3D)

(圖三) 3D 強化立體聲聲頻子系統(tǒng)方塊圖
結(jié)論
由于行動電話與個人數(shù)字處理器已發(fā)展為能夠提供各種不同娛樂的多功能可攜式設(shè)備,,廠商們皆盡量采用高度原音的聲頻系統(tǒng)及壽命較長的電池,,并使此類可攜式電子產(chǎn)品具備立體聲喇叭放大器,多種不同的混音,,以及3D 強化立體聲等功能,,同時在外型外也盡量輕薄小巧。但其設(shè)計范疇仍不脫離以上所述基本原理,,此為本文所要表達(dá)之另一目的,。