摘 要: 針對車牌漢字識別提出了一種基于二值圖形變動分析的模糊模板匹配的車牌漢字識別方案。介紹了該方法的具體實現(xiàn)算法和實驗流程及結(jié)果,。
關(guān)鍵詞: 模式識別 車牌識別 模板匹配
字符識別屬于模式識別的范疇,通常的字符識別方法可分為2類:基于字符結(jié)構(gòu)(筆畫特征)的結(jié)構(gòu)識別和基于字符統(tǒng)計特征的統(tǒng)計識別,。結(jié)構(gòu)模式識別方法的優(yōu)點(diǎn)是可以識別復(fù)雜的模式,,缺點(diǎn)是需要進(jìn)行筆畫特征的提取,在輸入圖像質(zhì)量不佳的情況下,這一點(diǎn)往往難以做到,。在統(tǒng)計模式識別方法中,,特征提取方便,識別速度與識別對象無關(guān),,但需要得到字符集的穩(wěn)定特征,,且在字符筆畫較多時要求的特征量非常大。二種識別方法各有優(yōu)缺點(diǎn),。
人類的視覺感知系統(tǒng)是一個魯棒性很強(qiáng)的,、能抵御實際中可能遇到的各種變形和噪聲干擾的文字識別系統(tǒng)。人們的認(rèn)字過程實際上是對漢字整體形象的把握,,是對漢字圖像全局的處理過程[1],。因而,漢字的整體信息在無筆順識別中起著無法替代的重要作用,。
統(tǒng)計模式識別借助概率論的知識,,判斷或決策對象的特征類別,使得決策的錯誤率達(dá)到最小,?;诮y(tǒng)計特征的識別方法先抽取識別對象的穩(wěn)定特征,組成特征矢量,,然后在字符集的特征空間中進(jìn)行特征匹配,。基于以上認(rèn)識,,在分析汽車牌照中漢字字符的特點(diǎn)后,,采用了有別于結(jié)構(gòu)分析的一種基于字符圖像特征統(tǒng)計的模式識別方法進(jìn)行漢字識別。同時針對統(tǒng)計方法無法區(qū)分的相似漢字,,提取其微結(jié)構(gòu)信息進(jìn)行特殊的校正識別,。
1 特征統(tǒng)計匹配
統(tǒng)計決策論其要點(diǎn)是提取待識別模式的一組統(tǒng)計特征,然后按照一定準(zhǔn)則所確定的決策函數(shù)進(jìn)行分類判決[2],。漢字的統(tǒng)計模式識別是將字符點(diǎn)陣看作一個整體,,從該整體上經(jīng)過大量統(tǒng)計得到所用特征,用盡可能少的特征模式來描述盡可能多的信息,。所采用的方法有:特征統(tǒng)計的方法,、整體變換分析法[3]、幾何矩特征,、筆劃密度特征,、字符投影特征、外圍特征,、微結(jié)構(gòu)特征和特征點(diǎn)特征等,。這些方法都具有各自的優(yōu)缺點(diǎn),,應(yīng)根據(jù)具體應(yīng)用進(jìn)行選取。主要方法有外圍面積特征匹配法和網(wǎng)格特征匹配法,。外圍面積特征反映了字符的輪廓信息,。外圍面積特征提取法,主要是從周圍形狀的心理學(xué)知識來獲得漢字信息的特征,,即對文字周圍上下左右的形狀進(jìn)行量化,,從而構(gòu)造特征向量。網(wǎng)格特征實際是結(jié)構(gòu)模式識別和統(tǒng)計模式識別相結(jié)合的產(chǎn)物,。字符圖像被均勻或非均勻地劃分為若干區(qū)域,,稱之為“網(wǎng)格”。在每個網(wǎng)格內(nèi)尋找各種特征,,如目標(biāo)面積比例,、交叉點(diǎn)、筆劃端點(diǎn)的個數(shù),、細(xì)化后的筆劃長度和筆劃密度等,。特征統(tǒng)計以網(wǎng)格為單位,即使個別點(diǎn)統(tǒng)計有誤差也不會造成大的影響,,從而增強(qiáng)了特征的抗干擾性,。因此這種方法得到日益廣泛的應(yīng)用。在實際的車牌漢字識別中,,當(dāng)相同漢字的二值圖形變動較小時該方法較有效,。具體應(yīng)用:將尺寸為34×66象素的漢字二值圖均勻分成32個正方形的小區(qū)域(不考慮外邊框的1個象素),統(tǒng)計每個8×8的小區(qū)域內(nèi)目標(biāo)象素(白色)所占的面積比例,,就得到了歸一化的32維特征矢量,。統(tǒng)計多幅相同漢字的32維特征矢量,取均值作為該漢字的標(biāo)準(zhǔn)網(wǎng)格特征模板,。識別時,,計算待識別漢字的32維網(wǎng)格特征矢量與模板矢量之間的Euclid距離,求得最小距離值,,其對應(yīng)的漢字即為識別結(jié)果,。在具體應(yīng)用中,由于外部原因常常會出現(xiàn)字符模糊,、字符傾斜的情況,而網(wǎng)格特征匹配方法對字符模糊和傾斜較敏感,,因此魯棒性不是很強(qiáng),,不適合實際應(yīng)用。
2 模板匹配
考慮到以上2種主要識別方法存在的弊端,,決定選用模板匹配的算法進(jìn)行字符的識別,。實際研究中發(fā)現(xiàn),二值化的圖形模板雖然直觀,但其匹配計算過程過于簡單直接,,對傾斜,、形變、殘損,、模糊的待識別字符匹配誤差較大,,因此魯棒性較差。而灰度模板由于色彩,、光照等因素影響,,難以找到普遍適用的模板形式實現(xiàn)直接的匹配計算。綜合以上二方面的問題,,在引入統(tǒng)計模式識別思想的基礎(chǔ)上,,提出了基于二值圖形變動分析的模糊模板匹配方案。
2.1 基于二值圖形變動分析的模糊模板匹配
在含有汽車牌照的圖像中,,將漢字定位并提取出來以后,,還要完成規(guī)格化、二值化等操作,。即使是相同的漢字,,由于車牌傾斜、模糊,,特別是由于每次定位不可能完全精確一致等諸多因素的影響,,導(dǎo)致在二值圖中字體的形狀、大小都會不同,,字體位置也會發(fā)生不同程度的偏移,。將這種二值圖形的不規(guī)則現(xiàn)象稱為圖形的變動。在漢字識別的分析過程中,,希望對圖形變動的大小進(jìn)行量化處理,。因此,提出了求圖形整體變動量的統(tǒng)計方法,,其優(yōu)點(diǎn)是不需要參照標(biāo)準(zhǔn)圖形,,可以進(jìn)行客觀評價,并構(gòu)造出用于匹配識別的模糊模板,。
對每一個車牌的漢字字符,,選取n幅質(zhì)量較好的參考圖。將這n幅參考圖規(guī)格化為17×33的標(biāo)準(zhǔn)大小后進(jìn)行二值化處理,,得到標(biāo)準(zhǔn)參考圖fi(x,,y)。因此每個車牌漢字字符都有n幅由0,、1所組成的二值圖像,。將這n幅二值圖像對齊后疊加,,再進(jìn)行歸一化。得到的模糊圖形F(x,,y),。四個漢字的模糊圖形模板(不同方向的視覺效果)如圖1所示。
該模糊圖形上每一象素點(diǎn)實際上都對應(yīng)著一個概率值,,該概率值代表白色目標(biāo)(漢字筆劃)在該點(diǎn)出現(xiàn)的可能性,。例如在模糊模板中若某一點(diǎn)值為1,表明在所有參加統(tǒng)計的二值圖形上漢字筆劃都經(jīng)過該點(diǎn),,其為白色目標(biāo)象素的可能性是100%,,為黑色背景象素的可能性是0;反之亦然,。進(jìn)行匹配識別時,,對一幅切分后的待識別漢字灰度圖,將其規(guī)格化,、二值化,,然后計算每一象素點(diǎn)與模板的吻合程度,即每一象素點(diǎn)正確匹配的置信度con(x,,y),。引入置信度的公式:
f(x,y)為得到的二值化后的待識別圖像,,把所有點(diǎn)的置信度平均后得到總的置信度con作為判別依據(jù),。最大置信度con所對應(yīng)的模板漢字作為匹配識別輸出的結(jié)果。
公式中的width和height分別是歸一化后標(biāo)準(zhǔn)圖像的長和寬,。通過對實驗結(jié)果的分析發(fā)現(xiàn),,識別錯誤的圖像,往往嚴(yán)重變形,、模糊,,二值化效果差。
2.2 基于二值圖形變動分析的模糊模板匹配的改進(jìn)算法
針對以上問題,,提出了一種簡單的改進(jìn)算法,。將切分后不同大小的灰度字符圖像規(guī)格化為17×33的標(biāo)準(zhǔn)尺寸以后,將各象素點(diǎn)的灰度值線性變換到[0,,1]區(qū)間,,再與模糊圖形模板匹配,計算Euclid距離,,其最小距離值對應(yīng)的模板漢字作為匹配識別輸出的結(jié)果,。該方法的優(yōu)點(diǎn)是不用對灰度圖像作二值化處理,避免了由于二值化操作帶來的圖像信息損失,。特別是對一些模糊圖像,,若直接采用二值化效果較差,影響匹配準(zhǔn)確度,。因此使用該方法在一定程度上提高了識別正確率,。
實驗中發(fā)現(xiàn),對少數(shù)明暗程度變化大或?qū)Ρ榷炔粡?qiáng)的模糊圖像,,該方法也產(chǎn)生了少量識別錯誤,。這是由于將待識別圖像的各點(diǎn)灰度值線性拉伸到[0,1]區(qū)間后,,原始圖像明暗程度不同導(dǎo)致其平均值與對應(yīng)模板的平均值并不一致,,直接用Euclid距離進(jìn)行匹配,帶來了計算誤差,。因此引入了歸一化相關(guān)性度量公式:
3 試驗結(jié)果的進(jìn)一步校正
模板匹配表現(xiàn)的主要是漢字的整體特征,,但是有些漢字存在著一定程度上整體的相似性,因此必須對相似的字符進(jìn)行進(jìn)一步的校正才能提高識別的正確率,。對相似漢字的區(qū)分,,往往是尋找其特有的筆劃結(jié)構(gòu),這也是在統(tǒng)計模式識別中引入結(jié)構(gòu)方法的必要之處,。例如在車牌漢字識別中,,“粵”字與其他省份漢字的最大區(qū)別是底部的鉤狀結(jié)構(gòu)。為此對預(yù)處理后的17×33二值圖像的底部1/4部分作水平和垂直方向的投影,,水平投影17個特征值(由左,、右二邊分別投影得到),垂直投影33個特征值(由上,、下二邊分別投影得到),,形成50維的微結(jié)構(gòu)投影特征矢量。“粵”字微結(jié)構(gòu)特征及其統(tǒng)計41幅圖像后的微結(jié)構(gòu)投影特征直方圖如圖2所示,。經(jīng)統(tǒng)計平均后作為區(qū)分相似漢字的依據(jù),。實際校正時,計算微結(jié)構(gòu)特征的匹配距離,。若小于預(yù)先設(shè)定的閾值,,則直接返回該漢字作為識別結(jié)果。
4 實驗流程及結(jié)果
對識別300幅切分后的質(zhì)量較好的漢字灰度圖進(jìn)行識別,,實驗流程如圖3所示,。實驗結(jié)果表明,外圍面積特征匹配法正確率達(dá)88%,,網(wǎng)格特征匹配法86%,,簡單模板匹配法91%,改進(jìn)算法的正確率達(dá)到了93%,。如果對識別結(jié)果進(jìn)一步校正,,正確率將提高到95%,。若再進(jìn)一步增加訓(xùn)練集,完善模板,,相信正確率還可以繼續(xù)提高,。
參考文獻(xiàn)
1 丁曉青.漢字識別研究的回顧.電子學(xué)報,2002,;30(9)
2 Trier I D,,Jain A K,Taxt T.Feature Extraction Methods for Character Recognition-A Survey.
Pattern Recognition.1996,;29(4)
3 朱小燕,,史一凡,馬少平.手寫體字符識別研究.模式識別與人工智能,,2000,;13(2)
4 王學(xué)文,丁曉青,,劉長松.基于Gabor變換的高魯棒漢字識別新方法.電子學(xué)報,,2002;30(9)