《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 測試測量 > 設(shè)計(jì)應(yīng)用 > 基于EEMD奇異值熵的局部放電模式識別
基于EEMD奇異值熵的局部放電模式識別
電子技術(shù)應(yīng)用
羅日平1,,羅穎婷2,賴詩鈺2,,趙顯陽3,王立琪4
1.南方電網(wǎng)科學(xué)研究院有限責(zé)任公司,,廣東 廣州 510700,;2.廣東電網(wǎng)有限責(zé)任公司電力科學(xué)研究院,廣東 廣州 510080,; 3.國網(wǎng)山東省電力公司菏澤供電公司,,山東 菏澤 274000;4.上海電力大學(xué) 電子與信息工程學(xué)院,,上海 201306
摘要: 針對氣體絕緣組合電器(GIS)局部放電故障信號非平穩(wěn)性和放電類型識別準(zhǔn)確率低的問題,,提出了一種基于集合經(jīng)驗(yàn)?zāi)B(tài)分解(EEMD)奇異值熵的局部放電模式識別算法。首先對局部放電原始信號進(jìn)行EEMD分解,,得到多個(gè)固有模態(tài)分量(IMF),,根據(jù)均方差、峭度和歐氏距離評價(jià)指標(biāo)選取隱含放電信息居多的最優(yōu)模態(tài)分量進(jìn)行信號重構(gòu),;然后對重構(gòu)信號進(jìn)行奇異值分解,,結(jié)合信息熵算法計(jì)算出奇異值熵;最后,,根據(jù)奇異值熵大小區(qū)分出GIS局部放電的類型,。實(shí)驗(yàn)結(jié)果表明,通過與傳統(tǒng)的EMD奇異值熵和VMD奇異值熵算法對比,,該方法可以有效地通過各自不同區(qū)間的奇異熵值進(jìn)行識別放電類型,。
中圖分類號:TM855 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.234499
中文引用格式: 羅日平,羅穎婷,,賴詩鈺,,等. 基于EEMD奇異值熵的局部放電模式識別[J]. 電子技術(shù)應(yīng)用,,2024,50(3):53-58.
英文引用格式: Luo Riping,,Luo Yingting,,Lai Shiyu,,et al. Partial discharge pattern recognition based on EEMD singular value entropy[J]. Application of Electronic Technique,,2024,50(3):53-58.
Partial discharge pattern recognition based on EEMD singular value entropy
Luo Riping1,,Luo Yingting2,,Lai Shiyu2,Zhao Xianyang3,,Wang Liqi4
1.China Southern Power Grid Scientific Research Institute Co.,, Ltd., Guangzhou 510700,, China,; 2.Electirc Power Research Insitute of Guangdong Power Grid Co., Ltd.,, Guangzhou 510080,, China; 3.State Grid Shandong Electric Power Company Heze Power Supply Co.,, Ltd.,, Heze 274000, China,; 4.School of Electronics and Information Engineering,, Shanghai University of Electric Power, Shanghai 201306,, China
Abstract: Aiming at the non-stationary of gas insulatede switchgear(GIS) partial discharge fault signal and the low accuracy of discharge type recognition, a partial discharge pattern recognition method based on ensemble empirical mode decomposition(EEMD) singular value entropy is proposed. Firstly, the EEMD algorithm is used to decompose the original signals of partial discharge to intrinsic mode functions(IMFs), according to the mean square error, kurtosis and euclidean distance evaluation index, the optimal modal component with most implicit discharge information is selected for signal reconstruction. Secondly, the singular value decomposition is performed on the reconstructed signal, and the singular value entropy is calculated in combination with the information entropy algorithm. Finally, according to the singular value entropy, the type of GIS partial discharge is distinguished. The experiment results show that by comparing with the traditional EMD singular value entropy and VMD singular value entropy algorithms, the method in this paper can effectively identify the discharge type through the singular entropy values in different intervals.
Key words : EEMD,;singular value entropy;evaluation index,;partial discharge,;pattern recognition

引言

氣體絕緣組合電器(Gas Insulatede Switchgear,GIS)是由斷路器、互感器,、隔離開關(guān)等組成的一種封閉式電網(wǎng)運(yùn)行設(shè)備,,具有結(jié)構(gòu)緊湊、占地面積小,、可靠性高等優(yōu)點(diǎn),,在電力系統(tǒng)中得到廣泛的運(yùn)用。然而,,該設(shè)備會(huì)受到電氣,、熱力和化學(xué)等外界條件的影響,,長時(shí)間會(huì)造成缺陷,這些缺陷在特定條件下將會(huì)導(dǎo)致絕緣材料局部擊穿,,從而形成局部放電(Partial Discharge,PD)[1-2],。由于GIS的局部放電存在多種類型,不同缺陷導(dǎo)致的局部放電類型存在差異,,將難以正確識別,。因此,能夠有效,、準(zhǔn)確地識別出GIS的局部放電類型,,就可以正確地診斷出故障原因并及時(shí)進(jìn)行檢修,這不僅有利于減少GIS設(shè)備的維修成本,,而且對保障整個(gè)電網(wǎng)的可靠運(yùn)行具有極其重要的現(xiàn)實(shí)意義,。


本文詳細(xì)內(nèi)容請下載:

http://forexkbc.com/resource/share/2000005916


作者信息:

羅日平1,羅穎婷2,,賴詩鈺2,,趙顯陽3,王立琪4

1.南方電網(wǎng)科學(xué)研究院有限責(zé)任公司  2.廣東電網(wǎng)有限責(zé)任公司電力科學(xué)研究院  3.國網(wǎng)山東省電力公司菏澤供電公司  4.上海電力大學(xué) 電子與信息工程學(xué)院


雜志訂閱.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。