摘要
在許多應(yīng)用中,,都要求前端轉(zhuǎn)換器具備寬輸入電壓范圍和高效率,。由于在寬輸入電壓范圍時效率較低,因此大多數(shù)PWM DC-DC轉(zhuǎn)換器都不能滿足這些要求,。因其電壓增益特性和小開關(guān)損耗特點(diǎn),,人們提出使用LLC來實(shí)現(xiàn)高效率和寬輸入電壓范圍要求【1】。這篇應(yīng)用報(bào)告為您介紹對LLC諧振回路電流的分析,。文章討論和比較了功率電阻,、電流變換器和電流探針三種電流測量方法,并介紹了這些電流測量方法的優(yōu)點(diǎn),、缺點(diǎn)和應(yīng)用情況,。實(shí)驗(yàn)結(jié)果與理論分析相一致。
1 引言
LLC是前端DC-DC轉(zhuǎn)換器的最佳備選項(xiàng),,它可以滿足寬輸入電壓范圍和高效率要求,。UCC25600專為使用諧振拓?fù)浣Y(jié)構(gòu)的DC/DC應(yīng)用而設(shè)計(jì),特別是LLC半橋諧振轉(zhuǎn)換器,。這種高度集成的控制器只有8支引腳,并使用小尺寸封裝,,它可以極大簡化系統(tǒng)設(shè)計(jì)和布局,,同時還可以縮短產(chǎn)品上市時間【2】,。因此,我們把LLC半橋諧振轉(zhuǎn)換器作為一個例子,,來分析諧振回路電流,。
2 諧振回路電流分析
圖1為一個LLC諧振半橋轉(zhuǎn)換器電路。
. S1和S2為一次MOSFET,。
. CS1和CS2為MOSFET漏極和源極之間的寄生電容器,。
. DS1和DS2為MOSFET的體二極管。
. Lr和Cr為諧振電感器和諧振電容器,。
. Lm為變壓器的磁電感器,。
. n為一次和二次線圈的匝數(shù)比
. 二次整流器包含D1和D2。
. CO為輸出電容器,。
. RL為負(fù)載,。
. Vin為輸入電壓,而VO則為輸出電壓,。
圖1LLC諧振半橋轉(zhuǎn)換器
LLC諧振轉(zhuǎn)換器共有2個諧振頻率:一個由Lr和Cr產(chǎn)生,,如方程式1所示;另一個由Lr,、Lm和Cr產(chǎn)生,,如方程式2所示。一般而言,,按照設(shè)計(jì),,正常輸入電壓時LLC工作在fr頻率下,從而實(shí)現(xiàn)最佳效率,。開關(guān)頻率大于fr,。一次MOSFET的ZVS可以實(shí)現(xiàn),但是二次二極管的ZCS無法實(shí)現(xiàn),;它被稱作LC串聯(lián)諧振,。當(dāng)開關(guān)頻率低于fr但高于fm時,可以同時實(shí)現(xiàn)ZVS和ZCS,。由于某個時間內(nèi)會出現(xiàn)Lr,、Lm和Cr諧振,因此它被稱作LLC串聯(lián)諧振,。在參考文獻(xiàn)【3】中,,大部分負(fù)載范圍的開關(guān)頻率均低于fr,因此本應(yīng)用報(bào)告會對頻率低于fr的工作情況進(jìn)行分析,。
圖2為fm<fs<fr的波形,,半周期被劃分為四部分。考慮到t2至t3的電壓峰值,,該周期情況如下圖所示,。所有方程式表明了功率參數(shù)的關(guān)系。
圖2 fm<fs<fr的波形
在t2下,,高側(cè)MOSFET S1被關(guān)閉,,但低側(cè)MOSFET仍處于關(guān)閉狀態(tài),因此t2為死區(qū)時間之初,。在此周期,,諧振回路電流無法流經(jīng)MOSFET;它對CS1充電,,然后對CS2放電,。CS1和CS2參與諧振。CS1和CS2相等,,并且都很小,,因此該周期非常短。ZVS迅速達(dá)到,。在現(xiàn)實(shí)系統(tǒng)中,,Cr>>CS1,因此在該周期內(nèi),,VCr幾乎不變,;可以把它看作是一個DC電壓源。圖3顯示了一個簡化版電路,。
圖3 t2<t<t3的簡化版電路
所有參數(shù)如方程式3和4所示,,諧振頻率等于方程式5。由于Ceq,,fr3遠(yuǎn)遠(yuǎn)大于fr1和fr2,。
其中,
我們對該周期內(nèi)諧振回路電流值的變化進(jìn)行研究,,因此要求一個方程式來描述時域諧振回路電流,。該周期的實(shí)際開始時間為t2,結(jié)束時間為t3,。為了簡化計(jì)算過程,,假設(shè)周期開始時間為0,則結(jié)束時間為ta,。時間為0時,,VCeq的電壓為,諧振回路電流為ILr,,因此
,。時間ta時,VCeq的電壓為
,因此
,。
根據(jù)方程式3,,VCeq(t)為:
其中,p1和p2為常量,。我們定義,因此方程式6可以得到簡化,。
iLr(t)表示為方程式8,。
分別代入方程式7和8中,常量系數(shù)p1和p2推導(dǎo)得:
放入方程式6,。
根據(jù)方程式11,,可推導(dǎo)出sin(ωrmt a)和cos(ωrmt a)。
iLr(ta)如方程式12所示,。由于推導(dǎo)得到所有參數(shù),,因此可得到iLr(ta)的確切值。
本周期內(nèi)諧振回路電流的變化被稱作?iLr,,其如下所示:
一般而言,,諧振回路電流分析常常會忽略?iLr,因?yàn)樗闹敌∮谥C振回路電流的峰值,,并且這種過渡周期遠(yuǎn)短于開關(guān)周期,。但是,這種短過渡周期會給測量電路帶來噪聲,。前述方程式可以驗(yàn)證測量結(jié)果是否為真,。當(dāng)為假時,應(yīng)改進(jìn)測量電路,。
3 諧振回路電流測量方法
要求電流波形時,,可使用三種方法來測量電流。
. 小容限功率電阻
. 電流變換器(CT)
. 直接通過電流探針來測量諧振回路電流
第一種方法是小容限功率電阻,,其與諧振回路中的其它組件串聯(lián),。這種電阻必須擁有高分辨率和良好的溫度性能。正常情況下,,諧振回路通過一個端子連接接地,,這樣可以減少測量的共模噪聲。另外,,它還是一種測量諧振回路電流的簡單方法,。但是,它會增加功耗,,特別是在強(qiáng)電流條件下,。另一方面,它改變了諧振參數(shù),并使其偏離初始設(shè)計(jì),。同時,,由于要求高性能,因此它的成本價格也很高,。
圖4 電流變換器等效模型
第二種方法是電流變換器(CT),,其一次側(cè)與諧振回路串聯(lián)。相比功率電阻(第一種方法),,這種方法的電阻較低,,并且其功耗也低于功率電阻方法。另外,,相比諧振回路的Lr和Lm,,CT的磁電感小到可以忽略不計(jì)。但是,,由于許多寄生參數(shù)原因,,CT并非是一種最佳解決方案。圖4顯示了CT的等效模型,。由于二次漏電感遠(yuǎn)大于一次漏電感,,因此漏電感設(shè)置在二次側(cè)。
圖4中:
. Cps為一次線圈和二次線圈之間的寄生電容,。
. Cp為一次側(cè)的寄生電容,。
. Cs為二次側(cè)的寄生電容。
. Lm為CT的磁電感,。
. R為采樣電阻,。
當(dāng)使用硬開關(guān)開啟或者關(guān)閉MOSFET時,電路狀態(tài)立刻劇烈變化,。這時,,產(chǎn)生大量的開關(guān)噪聲。這種噪聲通過Cps耦合到CT的二次側(cè),。另外,,噪聲還流經(jīng)Cp和Cs。Lm和Lleak也受到影響,。如果使用通用電壓探針來測量R的電壓,,則通常會出現(xiàn)一個高電壓峰值;但是,,如果使用差分電壓探針,,則Cps耦合的共模噪聲被消除,并且僅剩下差模噪聲,。電壓峰值得到了有效降低,。然而,,差模電壓探針測量的波形仍非真正的電流波形。
第三種方法是直接使用電流探針測量諧振回路電流,。正常情況下,,電流探針擁有較高的帶寬,足以進(jìn)行電源系統(tǒng)檢測,。例如,,Tektronix設(shè)計(jì)的TCP202便是一種DC耦合電流探針,其擁有高達(dá)50MHz的DC帶寬,。LLC諧振回路電流頻率為100kHz,。電流探針具有較高的性能,可以顯示近似真實(shí)的電流波形,。只需要一條短線,把它與回路中的其它組件串聯(lián)在一起,,這樣便組成了一個最低成本的電流波形觀察方法,。但是,電流探針測量的電流信號不能用于其它目的,,例如:回路控制,、保護(hù)電路等。
UCC25600 300W EVM演示了前面的分析,。圖5中,,使用不同方法對諧振回路電流進(jìn)行測量。CH2和CH3均由CT測量,,差別是,,“差分”電壓探針用于對CH2中CT輸出端的電壓信號進(jìn)行采樣,而“共模”電壓探針則用于對CH3中CT輸出端的電壓信號進(jìn)行采樣,。CH4通過電流探針直接測量,。圖5(b)和5(c)中,單獨(dú)測量CH2和CH3,,但在圖5(d)中,,同時對它們進(jìn)行測量。在圖5(a)中,,相比CH4,,可在CH3中看到大電流脈沖,其為嚴(yán)重噪聲,。在圖5(b)和圖5(c)中,,相比CH3,CH2的電流脈沖得到極大降低,,因?yàn)橄斯材T肼?;但是,,差模噪聲仍然存在,因此CH2的電流脈沖大于CH4,。在圖5(d)中,,CH2和CH3同時被測量,因?yàn)樵趦?nèi)部示波器,,所有示波器探針接地均連接,。CH3的共模噪聲會影響CH2。圖5(d)中CH2和CH3的波形相同,,其表明在圖5(b)和圖5(c)中,,CH3和CH2的共模噪聲結(jié)果相同。
圖5 使用不同方法對諧振回路電流進(jìn)行測量
根據(jù)實(shí)驗(yàn)結(jié)果,,前述分析得到了證實(shí),。在低電流條件下使用功率電阻方法,而采樣電流信號可用于實(shí)現(xiàn)其它功能,。在高電流條件下使用CT,,采樣電流信號可用于實(shí)現(xiàn)其它功能。如果給CT添加補(bǔ)償和濾波器,,則效果更好,。在所有情況下都可以使用電流探針,但其采樣電流信號不可以用于其它功能,。
請注意:推薦使用小范圍電流探針來測量低電流,。同樣,推薦使用大范圍電流探針來測量高電流,。
4 實(shí)驗(yàn)
為了驗(yàn)證第2小節(jié)的分析結(jié)果,,我們使用TI的LLC諧振半橋轉(zhuǎn)換器300W評估模件來獲得7組數(shù)據(jù)。所有參數(shù)均經(jīng)過設(shè)計(jì)和優(yōu)化,,Lr = 55 µH,、Lm = 280 µH、Cr = 24 nF,、Cs1 = 340 pF,,并且必須測量出Vin, VCr和ILr。
圖6顯示了諧振回路電流,、DS電壓和VCr(ZVS期間波形),,其中,CH2為諧振回路電流波形,。在圖6(a)中,,CH1為DS電壓波形。在圖6(b)中,,CH1為Cr波形的電壓,。通過電流探針測量諧振回路電流,,并使用差分電壓探針來測量DS電壓和Cr電壓。
表1列出了所有數(shù)據(jù):ILr1為ZVS之初ILr的值,,ILr2為ZVS結(jié)束時ILr的值,,而ΔIcal則為通過方程式13到方程20計(jì)算的結(jié)果。由于這些方程式都太復(fù)雜,,因此我們使用Mathcad來簡化計(jì)算,。對比ΔI和ΔIcal我們可以知道,ΔIcal接近于ΔI,,這表明第2小節(jié)中參考文獻(xiàn)【3】的分析是正確和合理的,。ΔIcal和ΔI的差值由寄生參數(shù)和測量誤差所造成。
圖6 諧振回路電流,、DS電壓及ZVS期間VCr波形
表1 參數(shù)值
5 結(jié)論
LLC可以提供寬輸入電壓范圍的高效率,。我們分析了LLC的諧振回路電流,并通過大量方程式說明了所有電能參數(shù)的關(guān)系,。文章討論了三種電流測量方法及其應(yīng)用,、優(yōu)點(diǎn)和缺點(diǎn)。實(shí)驗(yàn)結(jié)果證明了分析的正確性,。
參考文獻(xiàn)
【1】《寬負(fù)載范圍LLC諧振轉(zhuǎn)換器的高效率優(yōu)化》,作者:Ya Liu,。美國弗吉尼亞州布萊克斯堡:2007年弗吉尼亞理工學(xué)院及州立大學(xué)碩士學(xué)位論文,。
【2】《8引腳高性能諧振模式控制器》。2008年9月《TI UCC25600產(chǎn)品說明書》(SLUS846B),,2011年7月修訂,。
【3】LLC諧振半橋轉(zhuǎn)換器300W評估模塊。2009年4月《TI 用戶指南》(SLUU361),。