《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計 > 設(shè)計應(yīng)用 > 淺析光纖放大器技術(shù)
淺析光纖放大器技術(shù)
摘要: 在目前實用化的光纖放大器中主要有摻鉺光纖放大器(EDFA),、半導(dǎo)體光放大器(SOA)和光纖拉曼放大器(FRA)等,,其中摻鉺光纖放大器以其優(yōu)越的性能現(xiàn)已廣泛應(yīng)用于長距離,、大容量,、高速率的光纖通信系統(tǒng),、接入網(wǎng),、光纖CATV網(wǎng),、軍用系統(tǒng)(雷達多路數(shù)據(jù)復(fù)接,、數(shù)據(jù)傳輸,、制導(dǎo)等)等領(lǐng)域,作為功率放大器,、中繼放大器和前置放大器,。
Abstract:
Key words :

  光纖放大器概述

  光纖放大器不但可對光信號進行直接放大,同時還具有實時,、高增益,、寬帶、在線,、低噪聲,、低損耗的全光放大功能,是新一代光纖通信系統(tǒng)中必不可少的關(guān)鍵器件,;由于這項技術(shù)不僅解決了衰減對光網(wǎng)絡(luò)傳輸速率與距離的限制,,更重要的是它開創(chuàng)了1550nm頻段的波分復(fù)用,從而將使超高速,、超大容量,、超長距離的波分復(fù)用(WDM)、密集波分復(fù)用(DWDM),、全光傳輸,、光孤子傳輸?shù)瘸蔀楝F(xiàn)實,是光纖通信發(fā)展史上的一個劃時代的里程碑,。在目前實用化的光纖放大器中主要有摻鉺光纖放大器(EDFA),、半導(dǎo)體光放大器(SOA)和光纖拉曼放大器(FRA)等,其中摻鉺光纖放大器以其優(yōu)越的性能現(xiàn)已廣泛應(yīng)用于長距離,、大容量,、高速率的光纖通信系統(tǒng)、接入網(wǎng)、光纖CATV網(wǎng),、軍用系統(tǒng)(雷達多路數(shù)據(jù)復(fù)接,、數(shù)據(jù)傳輸、制導(dǎo)等)等領(lǐng)域,,作為功率放大器,、中繼放大器和前置放大器。

  光纖放大器一般都由增益介質(zhì),、泵浦光和輸入輸出耦合結(jié)構(gòu)組成。目前光纖放大器主要有摻鉺光纖放大器,、半導(dǎo)體光放大器和光纖拉曼放大器三種,,根據(jù)其在光纖網(wǎng)絡(luò)中的應(yīng)用,光纖放大器主要有三種不同的用途:在發(fā)射機側(cè)用作功率放大器以提高發(fā)射機的功率,;在接收機之前作

 

光預(yù)放大器以極大地提高光接收機的靈敏度,;在光纖傳輸線路中作中繼放大器以補償光纖傳輸損耗,延長傳輸距離,。

  摻鉺光纖放大器

  摻鉺光纖放大器是利用摻鉺光纖這一活性介質(zhì),,當(dāng)泵浦光輸入到EDF中時,就可以將大部分處于基態(tài)的Er3+抽運到激發(fā)態(tài)上,,處于激發(fā)態(tài)的Er3+又迅速無輻射地轉(zhuǎn)移到亞穩(wěn)態(tài)上,,由于Er3+在亞穩(wěn)態(tài)上的平均停留時間為10ms,因此很容易在亞穩(wěn)態(tài)與基態(tài)之間形成粒子數(shù)反轉(zhuǎn),,此時,,信號光子通過摻鉺光纖,在受激輻射效應(yīng)作用下產(chǎn)生大量與自身完全相同的光子,,使信號光子迅速增多,,這樣在輸出端就可以得到被不斷放大的光信號。自80年代末至90年代初研制成摻鉺光纖放大器(EDFA),,并開始應(yīng)用于1.55mm頻段的光纖通信系統(tǒng)以來,,推動了光纖通信向全光傳輸方向發(fā)展,且目前EDFA的技術(shù)開發(fā)和商品化最成熟,;應(yīng)用廣泛的C波段EDFA通常工作在1530~1565nm光纖損耗最低的窗口,,具有輸出功率大、增益高,、與偏振無關(guān),、噪聲指數(shù)低、放大特性與系統(tǒng)比特率和數(shù)據(jù)格式無關(guān),,且同時放大多路波長信號等一系列的特性,,在長途光通信系統(tǒng)中得到了廣泛的應(yīng)用。其不足是C-Band EDFA的增益帶寬只有35nm,僅覆蓋石英單模光纖低損耗窗口的一部分,,制約了光纖固有能夠容納的波長信道數(shù),;然而隨著因特網(wǎng)技術(shù)的迅速發(fā)展,要求光纖傳輸系統(tǒng)的傳輸容量要不斷地擴大,,面對傳輸容量的擴大,,目前主要有三種解決途徑:(1)增加每個波長的傳輸速率;(2)減少波長間距,;(3)增加總的傳輸帶寬,。對于第一種辦法,如果速率提高到10Gbit/s將帶來新的色散補償問題,,況且現(xiàn)在的電子系統(tǒng)還存在著所謂"電子瓶頸"效應(yīng)問題,。第二種辦法如果將信號間距從100GHz降低到50GHz或25GHz將給系統(tǒng)帶來四波混頻(FWM)等非線性效應(yīng),且要求系統(tǒng)采用波長穩(wěn)定技術(shù),。從而研究新的光纖放大器如L波段的EDFA是增加總的傳輸帶寬的一種,,它將EDFA工作波長由C波段1530~1560nm擴展到L波段1570~1605nm,使EDFA的放大增益譜擴展了一倍,。盡管L波段EDFA的波長覆蓋了EDF增益譜的尾部,,但仍可與性能先進的C波段EDFA產(chǎn)品相媲美:例如兩者的基本結(jié)構(gòu)相類似,大多數(shù)C波段EDFA的設(shè)計和制造技術(shù)仍可應(yīng)用于L波段EDFA研制,;L波段EDFA有較小的輻射和吸收以及較低的平均反轉(zhuǎn)因子,,增益波動系數(shù)遠(yuǎn)小于C波段EDFA,所存在的是L波段EDFA的EDF較長帶來無源光纖損耗較大,,放大噪聲稍大等不足,。

  半導(dǎo)體光放大器

  半導(dǎo)體光放大器(SOA)是采用通信用激光器相類似的工藝制作而成的一種行波放大器,當(dāng)偏置電流低于振蕩閾值時,,激光二極管就能對輸入相干光實現(xiàn)光放大作用,。由于半導(dǎo)體放大器具有體積小、結(jié)構(gòu)較為簡單,、功耗低,、壽命長、易于同其它光器件和電路集成,、適合批量生產(chǎn),、成本低,可實現(xiàn)增益兼開關(guān)功能等特性,,在全光波長變換,、光交換、譜反轉(zhuǎn),、時鐘提取,、解復(fù)用中的應(yīng)用受到了廣泛的重視,,特別是目前應(yīng)變量子阱材料的半導(dǎo)體光放大器的研制成功,已引起人們對SOA的廣泛研究興趣,。國內(nèi)武郵院與華中科技大學(xué)合作成功地研制開發(fā)了在光網(wǎng)絡(luò)中的關(guān)鍵器件--半導(dǎo)體光放大器,,并很快實現(xiàn)了產(chǎn)品化,成為繼Alcatel公司之后能夠批量供應(yīng)國際市場應(yīng)用于光開關(guān)的半導(dǎo)體光放大器的供貨商,,這標(biāo)志著我國自行研制的應(yīng)變量子阱器件邁出了商品化生產(chǎn)的關(guān)鍵一步,。但半導(dǎo)體光放大器與摻鉺光纖放大器相比存在著噪聲大、功率較小,、對串?dāng)_和偏振敏感,、與光纖耦合時損耗大,工作穩(wěn)定性較差等缺陷,,迄今為止,,其性能與摻鉺光纖放大器仍有較大的差距。又由于半導(dǎo)體光放大器覆蓋了1300~1600nm波段,,既可用于1300nm窗口的光放大器,,也可以用于1550nm窗口的光放大器,,且在DWDM多波長光纖通信系統(tǒng)中,,無需增益鎖定,那么它不僅可作為光放大器一種有益的選擇方案,,而且還可以促成1310nm窗口DWDM系統(tǒng)的實現(xiàn),。

  光纖拉曼放大器

  受激拉曼散射(SRS)是光纖中的一種非線性現(xiàn)象,它將一小部分入射光功率轉(zhuǎn)移到頻率比其低的斯托克斯波上,;如果一個弱信號與一強泵浦光波同時在光纖中傳輸,,并使弱信號波長置于泵浦光的拉曼增益帶寬內(nèi),弱信號光即可以得到放大,,這種基于受激拉曼散射機制的光放大器即稱為光纖拉曼放大器(FRA),。近年來光纖拉曼放大器倍受關(guān)注,已成為研制開發(fā)的熱點,,它具有許多優(yōu)點:(1)增益介質(zhì)為普通傳輸光纖,,與光纖系統(tǒng)具有良好的兼容性;(2)增益波長由泵浦光波長決定,,不受其它因素的限制,,理論上只要泵浦源的波長適當(dāng),就可以放大任意波長的信號光,;(3)增益高,、串?dāng)_小、噪聲指數(shù)低,、頻譜范圍寬,、溫度穩(wěn)定性好。

  正因為光纖拉曼放大器有這么多的優(yōu)點,它可以放大摻鉺光纖放大器所不能放大的波段,,并可在1292~1660nm光譜范圍內(nèi)進行光放大,,獲得比EDFA寬得多的增益帶寬

 

;再次增益介質(zhì)為普通光纖,,可制作分立式或分布式FRA,,分布式光纖拉曼放大器可以對信號光進行在線放大,增加光放大的傳輸距離,,應(yīng)用于40Gbit/s的高速光網(wǎng)絡(luò)中,,也特別適用于海底光纜通信系統(tǒng),而且因為放大是沿著光纖分布而不是集中作用,,所以輸入光纖的光功率大為減少,,從而非線性效應(yīng)尤其是四波混頻效應(yīng)大大減少,這對于大容量DWDM系統(tǒng)是十分適用的,。FRA是EDFA的補充,,而不是代替,兩者結(jié)合起來可獲得大于100nm增益平坦寬帶,,這就是采用分布式光纖拉曼放大器的好處,。

  但光纖拉曼放大器有一個主要的缺點就是需要特大功率的泵浦激光器,解決這個問題的主要途徑有:一是研究降低閾值功率的泵浦激光器,,使得普通的大功率半導(dǎo)體激光器能作為拉曼泵浦使用,;其二是提高獲得更大輸出功率泵浦激光器的研制水平;其三是將多個泵浦源激光器的波長采用列陣,、單片組合的方法復(fù)用在一起,,獲得一個大功率輸出的泵浦激光器,此種方法不但可提供一個寬帶的增益譜,,而且還可以通過調(diào)節(jié)單個激光器的功率來調(diào)整增益斜率,。

  WDM傳輸系統(tǒng)中光纖放大器的增益平坦控制技術(shù)

  為了確保WDM系統(tǒng)的傳輸質(zhì)量,WDM系統(tǒng)中使用的光纖放大器除具備有足夠的帶寬,、高輸出功率和低噪聲系數(shù)等特性外,,還對增益平坦度控制技術(shù)提出了更高的要求。光纖放大器帶內(nèi)的增益平坦度是指在整個可用的增益通帶內(nèi),,最大增益波長點的增益與最小增益波長點的增益之差,。很明顯,在WDM系統(tǒng)中增益平坦度越小越好,,否則,,如果各信道的增益不均,經(jīng)過多級放大之后,,這種增益差值會線性積累,,低增益信道信號的SNR惡化,,高增益信道的信號也因光纖非線性效應(yīng)而使信號惡化,因此,,要使各信道上的增益偏差處于允許范圍內(nèi),,放大器的增益就必須平坦,而使光纖放大器增益平坦技術(shù)大體有兩種途徑:其一是"增益均衡技術(shù)",;其二是"光纖技術(shù)",。"增益均衡技術(shù)"是利用損耗特性與放大器的增益波長特性相反的增益均衡器來抵消增益的不均勻性,這種技術(shù)的關(guān)鍵在于放大器的增益曲線和均衡器的損耗特性精密吻合,,使綜合特性平坦,;現(xiàn)階段實用化的固定式增益平坦控制技術(shù)主要有光纖光柵技術(shù)和介質(zhì)多層薄膜濾波器技術(shù)等。但隨著多通道(>80Ch),、高速率(>40Gbit/s),、長距離光纖傳輸系統(tǒng)的發(fā)展,對光纖放大器的增益平坦控制技術(shù)提出了更高的要求,,這就需要研制動態(tài)增益可調(diào)的增益平坦濾波器,,這種可調(diào)諧增益動態(tài)濾波器技術(shù)主要有:法拉第旋轉(zhuǎn)體型增益可調(diào)濾波器技術(shù)、波導(dǎo)馬赫-曾德型增益可調(diào)型濾波器技術(shù),、陣列波導(dǎo)型動態(tài)增益可調(diào)濾波器技術(shù)和聲光型動態(tài)增益可調(diào)濾波器技術(shù)等,。至于"光纖技術(shù)"現(xiàn)階段主要是在進一步研究摻鉺光纖特性的基礎(chǔ)上,改變光纖材料或利用不同光纖的組合來改變EDF的特性,,從而來改變EDFA的增益平坦性,,主要有摻鋁的EDFA,、摻氟化物EDFA,、摻碲化物EDFA、混合型EDFA和多纖心EDFA等技術(shù),。

  光纖放大器的主要應(yīng)用和市場

  近年來,,隨著信息和通信技術(shù)的飛速發(fā)展,光纖放大器的研究和發(fā)展又進一步擴大了增益帶寬,,將光纖通信系統(tǒng)推向了高速率,、大容量、長距離方向發(fā)展,。由于光纖放大器的獨特性能,,在DWDM傳輸系統(tǒng)、光纖CATV和光纖接入網(wǎng)中有著廣泛的應(yīng)用,。密集波分復(fù)用系統(tǒng)在光纖傳輸系統(tǒng)中已成為技術(shù)主流,,作為DWDM系統(tǒng)核心器件之一的光纖放大器在其應(yīng)用中將得到迅速發(fā)展,這主要是由于光纖放大器有足夠的增益帶寬,,它與WDM技術(shù)相結(jié)合可迅速簡便地擴大現(xiàn)有光纜系統(tǒng)的通信容量,,延長中繼距離,。在光纖接入網(wǎng)中,盡管用戶系統(tǒng)的距離較短,,但用戶網(wǎng)的分支太多,,需要用光纖放大器來提高光信號的功率以補償光分配器造成的光損耗和提高用戶的數(shù)量,降低用戶網(wǎng)的建設(shè)成本,。在光纖CATV系統(tǒng)中,,隨著其規(guī)模的不斷擴大,其鏈路的傳輸距離不斷增長,,光路的傳輸損耗也不斷增加,,將光纖放大器應(yīng)用在光纖CATV系統(tǒng)中不但可提高光功率,補償鏈路的損耗,,增加光用戶終端,,而且簡化了系統(tǒng)結(jié)構(gòu),降低了系統(tǒng)成本,,加快了光纖CATV的發(fā)展,。最近,美國CIBC World Market 公司的相關(guān)人士對摻鉺光纖放大器(EDFA),、光纖拉曼放大器(FRA),、半導(dǎo)體光放大器(SOA)這三類光放大器的市場狀況分別進行了分析:EDFA從1994年開始商用,現(xiàn)已成為DWDM系統(tǒng)的關(guān)鍵器件,,且市場正在快速增長,,其中Corning、Lucent和JDS Uniphase等許多公司都參與了這一市場的競爭,,預(yù)計全球EDFA市場將從1999年的13億美元增長到2004年的96億美元,,銷售量將以年均43%的速度遞增;光纖拉曼放大器近年來備受人們關(guān)注,,已成為開發(fā)的熱點,,盡管預(yù)計最近一兩年內(nèi)光纖拉曼放大器還不會在陸地光纜系統(tǒng)中廣泛應(yīng)用,但其市場規(guī)模仍將從1999年的約330萬美元猛增到2004年的7.5億美元,;而半導(dǎo)體光放大器(SOA)自應(yīng)變量子阱材料的SOA研制成功以

 

來,,其研制速度和應(yīng)用開發(fā)明顯加快,且SOA市場可望于2001年開始起動,,此后會迅速擴大,,2004年將達到2億美元的規(guī)模。

  光纖放大器的發(fā)展方向

  由于超高速率,、大容量,、長距離光纖通信系統(tǒng)的發(fā)展,對作為光纖通信領(lǐng)域的關(guān)鍵器件——光纖放大器在功率,、帶寬和增益平坦方面提出了新的要求,,因此,,在未來的光纖通信網(wǎng)絡(luò)中,光纖放大器的發(fā)展方向主要有以下幾個方面:

  (1)EDFA從C-Band向L-Band發(fā)展,;

  (2)寬頻譜,、大功率的光纖拉曼放大器;

  (3)將局部平坦的EDFA與光纖拉曼放大器進行串聯(lián)使用,,獲得超寬帶的平坦增益放大器,;

  (4)發(fā)展應(yīng)變補償?shù)臒o偏振、單片集成,、光橫向連接的半導(dǎo)體光放大器光開關(guān),;

  (5)研發(fā)具有動態(tài)增益平坦技術(shù)的光纖放大器;

  (6)小型化,、集成化光纖放大器,。

  隨著新材料、新技術(shù)的不斷突破,,光纖放大器在1292~1660nm波長范圍內(nèi)獲得帶寬為300nm超寬帶將不是夢想,,Tbit/s DWDM光網(wǎng)絡(luò)傳輸系統(tǒng)將一定會實現(xiàn)。

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。