高采樣速率模數(shù)轉(zhuǎn)換器(ADC)通常用在現(xiàn)代無(wú)線接收器設(shè)計(jì)中,,以中頻(IF)采樣速率采集復(fù)數(shù)調(diào)制的信號(hào)。這類設(shè)計(jì)通常都選用基于CMOS開(kāi)關(guān)電容的ADC,,因?yàn)樗鼈兊牡统杀竞偷凸奶攸c(diǎn)很吸引人,。但這類ADC采用一種直接連接到采樣網(wǎng)絡(luò)的無(wú)緩沖器的前端,這樣就會(huì)出現(xiàn)驅(qū)動(dòng)ADC的放大器的輸入跟蹤和保持阻抗隨時(shí)間變化的問(wèn)題,。為了有效地驅(qū)動(dòng)ADC,,使噪聲最低和有用信號(hào)失真最小,必須設(shè)計(jì)一種無(wú)源網(wǎng)絡(luò)接口幫助抑制寬帶噪聲,,并對(duì)跟蹤阻抗和保持阻抗進(jìn)行變換以便為驅(qū)動(dòng)放大器提供更好的負(fù)載阻抗,。針對(duì)幾種常見(jiàn)的IF頻率,本文中提出了一種諧振匹配方法,,用于將跟蹤和保持阻抗轉(zhuǎn)換為比較容易計(jì)算的負(fù)載,,從而實(shí)現(xiàn)抗鋸齒濾波器的精密設(shè)計(jì)。
開(kāi)關(guān)電容ADC
開(kāi)關(guān)電容ADC不帶緩沖器,,以便能降低功耗,。這種ADC的采樣保持放大器電路(SHA)主要包括一個(gè)輸入開(kāi)關(guān)、一個(gè)輸入采樣電容器,、一個(gè)采樣開(kāi)關(guān)和一個(gè)放大器,。如圖1所示,輸入開(kāi)關(guān)直接連接驅(qū)動(dòng)器和采樣電容器,。輸入開(kāi)關(guān)閉合時(shí)(跟蹤模式),,驅(qū)動(dòng)器電路驅(qū)動(dòng)輸入電容器,當(dāng)此模式結(jié)束時(shí),,輸入電容器開(kāi)始對(duì)輸入信號(hào)進(jìn)行采樣(捕獲),。而當(dāng)輸入開(kāi)關(guān)斷開(kāi)時(shí)(保持模式),驅(qū)動(dòng)器被輸入電容器隔離,。ADC的跟蹤模式周期和保持模式周期大約相等,。
圖1 連接到放大器驅(qū)動(dòng)器的開(kāi)關(guān)電容ADC簡(jiǎn)化輸入模型
圖2 AD9236在跟蹤和保持兩種模式下的不同輸入頻率
在SHA的跟蹤模式期間和保持模式期間,,ADC輸入阻抗的狀態(tài)是不同的,,這就很難使ADC的輸入阻抗與驅(qū)動(dòng)電路之間始終匹配。因?yàn)锳DC只能在跟蹤模式期間檢測(cè)輸入信號(hào),,所以在此期間輸入阻抗應(yīng)與驅(qū)動(dòng)電路匹配,。輸入阻抗與頻率的關(guān)系主要由采樣電容器和信號(hào)通路中所有的寄生電容決定。為了精確地匹配阻抗,,了解輸入阻抗和頻率的關(guān)系是非常必要的,。圖2為AD9236在輸入頻率高達(dá)1GHz時(shí)的輸入阻抗特性。
藍(lán)色曲線和紅色曲線分別表示ADC輸入SHA網(wǎng)絡(luò)在跟蹤和保持模式下輸入電容阻抗的虛部(對(duì)應(yīng)右邊的縱坐標(biāo)),。在小于100 MHz時(shí),,電容阻抗的虛部從跟蹤模式下的大于4pF變化到保持模式下的1pF。輸入SHA網(wǎng)絡(luò)在跟蹤和保持模式下的輸入阻抗實(shí)部分別用橙色和綠色曲線表示(對(duì)應(yīng)左邊的縱坐標(biāo)),。正如預(yù)期的那樣,,與保持模式相比,跟蹤模式下的阻抗值要低得多,。帶緩沖器輸入的ADC阻抗在整個(gè)標(biāo)稱寬帶內(nèi)都保持恒定,,而開(kāi)關(guān)電容ADC的輸入阻抗在最初的100MHz輸入帶寬內(nèi)會(huì)產(chǎn)生很大變化。
阻抗諧振匹配方法
為了有效地將有用信號(hào)耦合到ADC的理想奈奎斯特(Nyquist)區(qū)內(nèi),,必須要徹底了解ADC在有用頻率范圍內(nèi)的跟蹤和保持阻抗,。有幾家ADC制造商已經(jīng)提供了供網(wǎng)絡(luò)分析使用的散射參數(shù)和(或)阻抗參數(shù)。輸入阻抗數(shù)據(jù)可用于設(shè)計(jì)阻抗變換網(wǎng)絡(luò),,其有助于捕獲有用信號(hào)并抑制其他頻率范圍內(nèi)的無(wú)用信號(hào),。
如果知道了任何輸入系統(tǒng)的差分輸入阻抗,那么有可能設(shè)計(jì)出一個(gè)具有低信號(hào)損耗的電抗匹配網(wǎng)絡(luò),。輸入阻抗可以用復(fù)數(shù)ZIN=R+jX表示,,其中R表示輸入阻抗中的等效串聯(lián)電抗,X表示虛串聯(lián)電抗,這樣就可以找到一個(gè)將這種復(fù)數(shù)阻抗變換成負(fù)載的等效網(wǎng)絡(luò),。通常,,輸入阻抗被等效成一個(gè)并聯(lián)RC網(wǎng)絡(luò)。為了找到一個(gè)等效的RC并聯(lián)網(wǎng)絡(luò),,我們可以利用下述公式將阻抗轉(zhuǎn)換為導(dǎo)納,。(1)
有許多軟件程序可以計(jì)算復(fù)數(shù)的倒數(shù),例如Matlab和MathCad,,甚至像Excel的較新版本都有此功能,。
IF采樣和奈奎斯特區(qū)考慮
只有當(dāng)有用信號(hào)或頻率處于第一奈奎斯特區(qū)內(nèi)時(shí)才會(huì)進(jìn)行基帶采樣。但是,,有些轉(zhuǎn)換器可以在高于第一奈奎斯特區(qū)的頻域內(nèi)采樣,,這被稱作欠采樣或是IF采樣。圖3示出如何用相對(duì)于80 MHz采樣頻率(Fs)的140 MHz中頻來(lái)定義ADC的奈奎斯特區(qū),,信號(hào)實(shí)質(zhì)上處于第四奈奎斯特區(qū)內(nèi),。IF頻率的鏡像頻率可以映射到第一奈奎斯特區(qū),這就好像在第一奈奎斯特區(qū)看到一個(gè)20 MHz的信號(hào)一樣,。還應(yīng)該注意到大多數(shù)FFT分析儀,,例如ADC AnalyzerTM,只能分析第一奈奎斯特區(qū)或0~0.5Fs的FFT,。因此,,如果有用頻率高于0.5Fs,那么鏡像頻率可被映射到第一奈奎斯特區(qū)或者常說(shuō)的基帶,。如果雜散頻率也在可用帶寬內(nèi),,這樣就會(huì)使事情變得復(fù)雜。
圖3 奈奎斯特區(qū)的定義
那么,,當(dāng)ADC偏離采樣頻率0.5Fs時(shí)怎能滿足奈奎斯特準(zhǔn)則呢,?這里重述Walt Kester在ADI高速IC研討會(huì)技術(shù)資料中介紹的“奈奎斯特準(zhǔn)則”,即信號(hào)的采樣速率必須大于等于其帶寬的兩倍,,才能保持信號(hào)的完整信息,,該準(zhǔn)則也可見(jiàn)式(2)。
FS>2FBW (2)
其中,,F(xiàn)s表示采樣頻率,,F(xiàn)BW表示最高有用頻率。 這里的關(guān)鍵是要注意有用頻率的位置,。只要信號(hào)沒(méi)有重疊并且留在一個(gè)奈奎斯特區(qū)內(nèi),,就可以滿足奈奎斯特準(zhǔn)則。唯一不同的是有用頻率的位置從第一奈奎斯特區(qū)到了高階奈奎斯特區(qū),。
IF采樣已經(jīng)越來(lái)越受歡迎,,因?yàn)樗试S設(shè)計(jì)工程師去除信號(hào)鏈中的混頻級(jí)電路。這樣就能提高性能,因?yàn)闇p少了信號(hào)鏈中元件總數(shù)量,,實(shí)際上降低了引入系統(tǒng)的附加噪聲,,從而進(jìn)一步提高系統(tǒng)總的信噪比(SNR)。在某些情況下,,這樣做還可以提高無(wú)雜散動(dòng)態(tài)范圍性能(SFDR),,因?yàn)橄嘶祛l級(jí)電路會(huì)降低本地振蕩器(LO)通過(guò)混頻器引起的泄漏。
在進(jìn)行IF采樣時(shí),,對(duì)高頻抗鋸齒濾波器(AAF)的設(shè)計(jì)是相當(dāng)重要的。在大多數(shù)情況下,,AAF被設(shè)計(jì)在有用頻帶內(nèi)的中心,。在IF采樣應(yīng)用中,恰當(dāng)?shù)臑V波器設(shè)計(jì)是至關(guān)重要的,,以便低奈奎斯特區(qū)內(nèi)的低頻噪聲不會(huì)落入有用頻率所在的高階奈奎斯特區(qū),。而且,不良的濾波器設(shè)計(jì)會(huì)導(dǎo)致在本底噪聲的基帶鏡像出現(xiàn)過(guò)多的噪聲,。圖4顯示了抗鋸齒濾波器的阻帶衰減特性,。
很顯然,系統(tǒng)動(dòng)態(tài)范圍和帶通濾波器的階數(shù)有直接的關(guān)系,。此外,,系統(tǒng)的階數(shù)還依賴于系統(tǒng)的分辨率。分辨率越低,,本底噪聲就越高,,信號(hào)具有的混頻效應(yīng)就越小,因此對(duì)系統(tǒng)的階數(shù)要求就越低,。但是,,有些高階
濾波器可能會(huì)在通帶中產(chǎn)生較多的紋波,這會(huì)對(duì)系統(tǒng)的性能起到反作用,,因?yàn)槠湟l(fā)了相位失真和幅度失真,。總之,,在設(shè)計(jì)抗鋸齒濾波器時(shí)必須非常小心,。
抗鋸齒濾波器設(shè)計(jì)
抗鋸齒濾波器有助于減少無(wú)用奈奎斯特區(qū)中的信號(hào)內(nèi)容,否則會(huì)產(chǎn)生帶內(nèi)信號(hào)混頻從而降低動(dòng)態(tài)性能,。通常采用LC網(wǎng)絡(luò)設(shè)計(jì)抗鋸齒濾波器,,而且必須要明確規(guī)范源阻抗和負(fù)載阻抗,以便獲得要求的阻帶特性和通頻帶特性,。通常采用切比雪夫(Chebyshev)或巴特沃斯(Butterworth)多項(xiàng)式定義濾波器的傳遞函數(shù),。有幾種濾波器設(shè)計(jì)程序有助于簡(jiǎn)化這個(gè)問(wèn)題,例如NuHertz Technologies公司的Filter Free4.0或Agilent Technologies公司的ADS。另外,,可以使用濾波器設(shè)計(jì)手冊(cè)來(lái)找到歸一化的原型濾波器參數(shù)值,,然后根據(jù)要求的截止頻率和負(fù)載阻抗按適當(dāng)比例進(jìn)行設(shè)計(jì)。圖5(a)中提供了一個(gè)四階的歸一化原型濾波器實(shí)例,。該濾波器遵循切比雪夫多項(xiàng)式,,針對(duì)5:1的負(fù)載和源阻抗比,理論上可提供小于0.5dB的紋波,。對(duì)于144MHz的截止頻率和600W的負(fù)載阻抗,,其單端等效網(wǎng)絡(luò)如圖5(b)表示。大多數(shù)高速ADC都能夠利用差分輸入接口完成高動(dòng)態(tài)范圍IF采樣,。因此有必要將單端網(wǎng)絡(luò)轉(zhuǎn)換為如圖5(c)所示的差分網(wǎng)絡(luò),。在轉(zhuǎn)換為最終的差分網(wǎng)絡(luò)時(shí),串聯(lián)阻抗實(shí)質(zhì)上被減半了(見(jiàn)圖5(d)),。值得一提的是,,試圖建立印制電路板(PCB)寄生元件模型以便選擇最佳的L和C值是很明智的做法。最終實(shí)現(xiàn)的網(wǎng)絡(luò)采用了比理論值稍低的電感值,,以便適應(yīng)電路印制線的串聯(lián)電感,。應(yīng)該注意的是圖5(c)中的負(fù)載現(xiàn)在用圖5(d)中的ADC接口代替,包括一個(gè)分流電感器和共模偏置電阻器,。偏置電阻為每個(gè)差分輸入端提供所需的直流偏置,,并且與原來(lái)的跟蹤阻抗和諧振分流電感器結(jié)合起來(lái)共同為負(fù)載提供濾波器。
考慮網(wǎng)絡(luò)的品質(zhì)因數(shù)Q是很重要的,。負(fù)載和源阻抗的比例越大,,就越需要注意元件Q值和布線的寄生效應(yīng)。通常需要采用一些經(jīng)驗(yàn)性的反復(fù)試驗(yàn)法來(lái)優(yōu)化網(wǎng)絡(luò)接口,,以達(dá)到噪聲和失真性能的最佳組合,。采用能精確地捕獲實(shí)際L和C寄生效應(yīng)的元件模型對(duì)網(wǎng)絡(luò)響應(yīng)進(jìn)行仿真是較為合適的。
測(cè)試性能
上例中的電路設(shè)計(jì)提供了優(yōu)良動(dòng)態(tài)性能(見(jiàn)圖6),。應(yīng)該注意在有和沒(méi)有適當(dāng)設(shè)計(jì)接口網(wǎng)絡(luò)兩種情況下 SFDR和總諧波失真的差異,。諧振分流電感器轉(zhuǎn)換了ADC的原始阻抗,從而為濾波器提供可預(yù)測(cè)的負(fù)載阻抗,。另外,,分流電感有助于吸收所有的低頻閃爍噪聲和DC失調(diào),不然它們會(huì)破壞0Hz頻率附近的本底噪聲,??逛忼X濾波器有助于抑制高頻寬帶噪聲,不然它們會(huì)造成帶內(nèi)混頻,,而且它還有助于抑制驅(qū)動(dòng)放大器輸出端出現(xiàn)的高頻諧波,。這樣就為工作在140MHz中心頻率的高IF采樣接收器提供了一種合適的解決方案,。整個(gè)2MHz帶寬內(nèi)頻率響應(yīng)的均勻性小于±0.2dB,并且其組延時(shí)小于10ns,。
圖6 在140MHz頻率下用AD82370驅(qū)動(dòng)AD9236前后的波形
圖7提供了一個(gè)低頻率案例,。該解決方案適合于可用帶寬為5 MHz的雙倍向下變頻IF采樣設(shè)計(jì),其群延時(shí)小于100ns,,通帶紋波小于±0.25dB,。在這種案例中,采用AD8351差分放大器驅(qū)動(dòng)14bit,,65 Msps的AD9244 CMOS ADC,。還可以將同樣的設(shè)計(jì)方法用于先前的案例,會(huì)使級(jí)聯(lián)本底噪聲改進(jìn)6dB以上,,而SFDR可以提高10dB以上,。
圖7 在48MHz頻率下AD8351區(qū)動(dòng)AD9244前后的波形