文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.173508
中文引用格式: 劉靚歡,,黃世鋒,,陳章友. 基于FMCW環(huán)掃SAR的成像系統(tǒng)設(shè)計(jì)及測(cè)試方法[J].電子技術(shù)應(yīng)用,2018,,44(3):47-51.
英文引用格式: Liu Lianghuan,,Huang Shifeng,Chen Zhangyou. Design and testing method of imaging system based on FMCW circular scanning SAR[J]. Application of Electronic Technique,,2018,,44(3):47-51.
0 引言
合成孔徑雷達(dá)(SAR)的成像受天氣影響較小,,且不受白天黑夜的制約,所以在航海,、軍事等領(lǐng)域有著廣闊的應(yīng)用前景,。環(huán)掃SAR的概念于1990年由KLAUSING H等人提出[1],與傳統(tǒng)直線SAR相比,,具有360°的成像視野,,高方位向的分辨率和掃描速度以及實(shí)現(xiàn)短時(shí)間內(nèi)獲得大范圍成像效果的優(yōu)勢(shì)[2-4],有著廣泛的應(yīng)用前景,。調(diào)頻連續(xù)波(Frequency Modulated Continuous Wave,,F(xiàn)MCW)SAR與傳統(tǒng)脈沖SAR相比,優(yōu)勢(shì)在于其輕便,、發(fā)射功率小[5-6],、隱蔽性高且分辨率高。FMCW體制下的環(huán)掃SAR結(jié)合二者優(yōu)點(diǎn),,對(duì)于其成像系統(tǒng)研究具有實(shí)用意義,。
本文基于FMCW環(huán)掃SAR雷達(dá)體制,提出一種目標(biāo)距離向成像系統(tǒng)的設(shè)計(jì)及其測(cè)試方法,。該設(shè)計(jì)根據(jù)實(shí)際所需分辨率和探測(cè)距離設(shè)計(jì)了多種模式,,每種模式均對(duì)應(yīng)特定的波形參數(shù)。根據(jù)FMCW體制,,目標(biāo)的距離向成像采用去調(diào)頻的方式獲得目標(biāo)回波的差拍頻信號(hào),,對(duì)該信號(hào)頻率分析后得到最終結(jié)果[7]。由于模擬前端實(shí)際采集的回波信號(hào)要求的分辨率高,因此頻率分析的數(shù)據(jù)量巨大,,為滿足數(shù)據(jù)實(shí)時(shí)性處理的需求,,成像系統(tǒng)由模擬前端完成去調(diào)頻處理后,所得模擬信號(hào)經(jīng)采樣量化得到數(shù)字信號(hào)[8],,送至FPGA數(shù)字下變頻處理,,得到目標(biāo)的距離向成像數(shù)據(jù)。
本文首先通過(guò)MATLAB模擬某一工作模式目標(biāo)回波的去調(diào)頻信號(hào),,經(jīng)由FPGA數(shù)字下變頻得到距離向數(shù)據(jù),,加載至MATLAB觀測(cè)信號(hào)頻譜確認(rèn)與設(shè)計(jì)的工作模式代表的距離參數(shù)是否一致。得到一致性的結(jié)果后,,通過(guò)模擬前端的閉環(huán)方式得到目標(biāo)距離為0時(shí)的去調(diào)頻信號(hào)并加載至FPGA,,觀測(cè)頻譜驗(yàn)證該成像系統(tǒng)的可行性和正確性。
1 設(shè)計(jì)原理
1.1 雷達(dá)波形參數(shù)設(shè)計(jì)
FMCW環(huán)掃SAR雷達(dá)系統(tǒng)主要由發(fā)射機(jī),、頻綜器,、接收機(jī)、信號(hào)處理板,、轉(zhuǎn)臺(tái)和收發(fā)天線組成,。頻綜器接收到來(lái)自上位機(jī)的波形配置參數(shù)產(chǎn)生相對(duì)應(yīng)頻率范圍在9.4~9.6 GHz的射頻信號(hào)和本振信號(hào),前者送入發(fā)射機(jī)放大后通過(guò)發(fā)射天線送往自由空間,,后者送入接收機(jī),,與來(lái)自接收天線的回波信號(hào)進(jìn)行降載頻及去調(diào)頻處理得到57.5~62.5 MHz的中頻信號(hào),然后將中頻模擬信號(hào)送入信號(hào)處理板進(jìn)行距離向成像處理,。雷達(dá)參數(shù)見(jiàn)表1,。
根據(jù)不同分辨率和探測(cè)距離要求,在FMCW體制中設(shè)計(jì)了10種工作模式下的發(fā)射和接收波形參數(shù),。雷達(dá)發(fā)射波形可表示為:
其中,,f0是信號(hào)的載波頻率,K=-B/T為信號(hào)的調(diào)頻斜率,,B為信號(hào)的帶寬,,T為信號(hào)的掃頻周期,也是信號(hào)的工作周期,。選取能夠分別代表近,、中、遠(yuǎn)3種探測(cè)距離的波形參數(shù),,見(jiàn)表2,。
1.2 雷達(dá)波形參數(shù)分析
為實(shí)現(xiàn)距離向的高分辨率,,F(xiàn)MCW距離向處理采用差拍頻傅里葉變換技術(shù),,降低采樣率。差拍頻的范圍由最近、最遠(yuǎn)斜距決定,。距離分辨率只與發(fā)射信號(hào)帶寬有關(guān),,帶寬越大,距離分辨率越高,。
本雷達(dá)發(fā)射波形最大掃頻帶寬B=30.5 MHz,,理想距離分辨率為:
在整個(gè)工作周期內(nèi),F(xiàn)MCW信號(hào)一直在發(fā)射,,接收時(shí)間相對(duì)發(fā)射有時(shí)間延時(shí)td(不同工作模式時(shí)不同),,其時(shí)序如圖1所示,T為工作周期,,B為掃頻帶寬,。
考慮了回波延時(shí)的影響后,目標(biāo)距離分辨率為:
在FMCW體制中,,在不同的探測(cè)距離上有不同的距離分辨率,。距離越遠(yuǎn),分辨率越差,。表2給出的參數(shù)驗(yàn)證了此結(jié)論,。
2 距離向成像系統(tǒng)設(shè)計(jì)
2.1 FMCW距離向成像原理
差拍頻傅里葉變換技術(shù)是脈沖壓縮方法中的一種。其原理是將回波線性調(diào)頻信號(hào)和具有相同調(diào)頻斜率的線性調(diào)頻參考信號(hào)的共軛相乘[9-10](去調(diào)頻處理),,獲得目標(biāo)的差拍信號(hào),,用頻譜分析的方法分析此差拍信號(hào)的頻率,達(dá)到脈沖壓縮的目的,。
根據(jù)式(1),,可以得到時(shí)延回波:
其中,τ=2d/c為目標(biāo)引起回波相對(duì)于發(fā)射波產(chǎn)生的時(shí)延,。
該環(huán)掃SAR接收體系采用兩級(jí)混頻得到中頻信號(hào),,一級(jí)混頻用于降低信號(hào)頻率,二級(jí)混頻用于去調(diào)頻處理,。
不考慮幅度影響,,一本振信號(hào)相位設(shè)為:
其中,Δf1為一本振與主振的載頻頻差,,f20為二本振的載波頻率,,tx=2Rmax/c為二本振更新脈沖時(shí)延,由探測(cè)距離決定,,相關(guān)參數(shù)見(jiàn)表2的接收延遲參數(shù),。
接收信號(hào)通過(guò)兩級(jí)混頻得到中頻信號(hào)相位:
由上式知,回波信號(hào)的頻率與時(shí)延tx有關(guān),,即與探測(cè)距離有關(guān),,對(duì)中頻信號(hào)進(jìn)行FFT即可得到中頻信號(hào)的頻率[11],。
2.2 數(shù)字化系統(tǒng)設(shè)計(jì)
去調(diào)頻處理在接收機(jī)內(nèi)完成,得到模擬中頻信號(hào),。為使得能在FPGA中完成距離向成像處理,,在接收機(jī)和FPGA間加入AD采集模塊。圖2所示為FMCW體制距離向成像方法的4大組成模塊:去調(diào)頻,、AD采集,、數(shù)字下變頻(DDC)和傅里葉變換(FFT)。其中去調(diào)頻模塊在接收機(jī)內(nèi)完成,,AD采集,、DDC和FFT模塊均由FPGA實(shí)現(xiàn)。
AD采集模塊將模擬中頻信號(hào)轉(zhuǎn)為數(shù)字信號(hào),。DDC主要實(shí)現(xiàn)對(duì)頻譜的搬移和降速處理,,得到基帶信號(hào),包括NCO,、CIC抽取器,、混頻器及FIR濾波器。通過(guò)帶通采樣,,得到數(shù)字回波信號(hào),,NCO 產(chǎn)生兩路正交本振信號(hào)提供給混頻器, 混頻器得到本振信號(hào)與數(shù)字回波信號(hào)的乘積,,信號(hào)此時(shí)被搬移至基帶,,CIC抽取器對(duì)該基帶信號(hào)進(jìn)行降速處理,即按倍數(shù)抽取,,再通過(guò)FIR濾波器獲得需要的頻段信號(hào),,最后進(jìn)行FFT變換。
當(dāng)接收天線接收到目標(biāo)的反射信號(hào)后送入接收機(jī)去調(diào)頻處理,。根據(jù)式(8)以及該環(huán)掃SAR在FMCW體制實(shí)際情況中載頻f0有9.2 GHz,、9.4 GHz和9.6 GHz 3種,使用的頻差Δf1=800 MHz,、二本振載頻f20=862.5 MHz,。接收機(jī)中頻信號(hào)可以表示為:
以載頻9.4 GHz為例,給出接收機(jī)內(nèi)部信號(hào)時(shí)頻圖,,如圖3所示,。
為模擬后續(xù)模塊成像方法,用信號(hào)發(fā)生器模擬中頻輸出中心頻率60 MHz,,帶寬5 MHz,。設(shè)置帶通采樣頻率為48 MHz,采樣后中頻信號(hào)中心頻率變?yōu)?2 MHz,,帶寬不變,,送入DDC,。
設(shè)計(jì)NCO產(chǎn)生12 MHz正弦波的本振信號(hào),對(duì)實(shí)信號(hào)采樣的單路信號(hào)正交混頻得到I,、Q兩路信號(hào),再通過(guò)一個(gè)低通濾波器濾除混頻產(chǎn)生的高頻分量,,得到基帶信號(hào),,帶內(nèi)頻率范圍為-2.5~2.5 MHz。為減輕后續(xù)信號(hào)處理的壓力,,該基帶信號(hào)經(jīng)過(guò)CIC抽取器降速處理,,具體抽取值根據(jù)工作模式?jīng)Q定,所得信號(hào)送入低通濾波器進(jìn)行濾波和整形后,,判斷輸出數(shù)據(jù)是否滿足8 192個(gè)點(diǎn),,若有點(diǎn)數(shù)不足8 192的,對(duì)該信號(hào)補(bǔ)零,,若滿足8 192點(diǎn),,則不進(jìn)行補(bǔ)零處理。完成后對(duì)8 192點(diǎn)數(shù)據(jù)進(jìn)行FFT變換,,取出需要進(jìn)行方位向成像距離元送入DSP進(jìn)行后續(xù)處理,。
3 距離向成像測(cè)試方法
3.1 FPGA與MATLAB板級(jí)系統(tǒng)仿真
仿真時(shí),以NCO為信號(hào)源產(chǎn)生11.4 MHz的正弦波,,模擬接收機(jī)輸出的中頻信號(hào)59.4 MHz,。NCO產(chǎn)生本振信號(hào)12 MHz?;祛l后得到差頻信號(hào)-0.6 MHz,,和頻信號(hào)-23.4 MHz,通過(guò)低通濾波器后保留了混頻后所需的差頻信號(hào)-0.6 MHz,。CIC抽取選取工作模式1,,抽取倍數(shù)為3,實(shí)現(xiàn)3倍抽取降速處理,。FFT變換后產(chǎn)生I,、Q兩路信號(hào),將數(shù)據(jù)導(dǎo)入MATLAB,,仿真結(jié)果如圖4所示,。
3.2 FMCW距離向成像板級(jí)閉環(huán)測(cè)試
現(xiàn)場(chǎng)測(cè)試時(shí),微波源產(chǎn)生信號(hào)處理板需要的時(shí)鐘48 MHz,,同時(shí)根據(jù)波形參數(shù)產(chǎn)生接收機(jī)所需的一本振,、二本振信號(hào)。由于是閉環(huán)測(cè)試,,因此微波源產(chǎn)生的主振信號(hào)作為接收機(jī)的輸入,,同時(shí)為避免信號(hào)過(guò)大損壞接收機(jī),,在二者間接入30 dB衰減器。與仿真一致,,以工作模式1為例,,給出FMCW環(huán)掃SAR體制距離向成像板級(jí)實(shí)測(cè)結(jié)果。
在接收機(jī)內(nèi)去調(diào)頻處理后的中頻信號(hào)輸入至信號(hào)處理板AD采集,。根據(jù)式(9),,由于閉環(huán)測(cè)試,回波延時(shí)τ=0,,接收機(jī)輸出中頻信號(hào)頻率61.77 MHz,。將接收機(jī)中頻輸出直接接入頻譜儀觀測(cè),如圖5所示,。
用Signal Tap抓取AD采集,、DDC各模塊以及FFT輸出數(shù)據(jù),導(dǎo)入MATLAB得到信號(hào)頻譜如圖6所示,。中頻信號(hào)經(jīng)帶通采樣,,得到13.77 MHz的信號(hào),NCO產(chǎn)生12 MHz的本振信號(hào),?;祛l得到1.77 MHz和-25.77 MHz兩個(gè)頻率,由于本振信號(hào)的串?dāng)_,,混頻后輸出存在12 MHz的串?dāng)_信號(hào),。經(jīng)濾波輸出后,該串?dāng)_的本振信號(hào)被濾除,。CIC濾波器在工作模式1時(shí)抽取倍數(shù)為3,,抽取后數(shù)據(jù)率是原信號(hào)的1/3,信號(hào)頻率保持不變,,抽取以及濾波輸出信號(hào)頻譜如圖6所示,,最后做FFT得到信號(hào)距離向頻譜。
根據(jù)頻譜儀顯示結(jié)果,,接收機(jī)中頻信號(hào)頻率為61.769 MHz,,帶通采樣后得到13.769 MHz的信號(hào),經(jīng)DDC得到1.769 MHz的基帶信號(hào),。實(shí)際得到的信號(hào)頻率為1.768 MHz,,根據(jù)式(9)換算成距離為-1.2 m,工作模式1的距離分辨率為5 m,,誤差在允許的范圍內(nèi),。
為驗(yàn)證該系統(tǒng)能應(yīng)用于多模式場(chǎng)景,分別給出代表中距離和遠(yuǎn)距離模式的閉環(huán)實(shí)測(cè)結(jié)果,,并與接收機(jī)輸出值頻譜儀觀測(cè)結(jié)果對(duì)比,。根據(jù)表2,,選擇工作模式3和工作模式5測(cè)試。
中距離工作模式3時(shí),,接收機(jī)中頻輸出理論值59.263 MHz,,經(jīng)DDC得到-0.737 MHz基帶信號(hào),實(shí)際得到的信號(hào)頻率為-0.736 MHz,,換算成距離為4.9 m,,距離分辨率為6.8 m,滿足誤差要求,。其FFT模塊輸出和接收機(jī)直接接入頻譜儀觀測(cè)對(duì)比圖如圖7所示,圖7(a)為接收機(jī)輸出接入頻譜儀觀測(cè),,圖7(b)為FFT后輸出,。
遠(yuǎn)距離工作模式5時(shí),接收機(jī)中頻輸出理論值59.437 MHz,,實(shí)際值為59.275 MHz,,經(jīng)DDC得到-0.563 MHz基帶信號(hào),實(shí)際信號(hào)頻率為-0.559 6 MHz,,換算成距離為43.49 m,,距離分辨率為36 m。接近3個(gè)距離元的差別,,此實(shí)際值與理論值的差別由于中頻輸出存在系統(tǒng)誤差,,需要后續(xù)進(jìn)行校正。其FFT模塊輸出和接收機(jī)直接接入頻譜儀觀測(cè)對(duì)比圖如圖8所示,,其中圖8(a)為接收機(jī)輸出接入頻譜儀觀測(cè),,圖8(b)為FFT后輸出。
4 結(jié)論
本文針對(duì)FMCW環(huán)掃SAR目標(biāo)距離向探測(cè)需求,,提出了一種基于FMCW環(huán)掃SAR的成像系統(tǒng)的設(shè)計(jì)及測(cè)試方法,。該設(shè)計(jì)包含去調(diào)頻處理、AD采集,、DDC和FFT等模塊設(shè)計(jì),。在FPGA中構(gòu)建NCO、混頻器,、CIC抽取器和FIR濾波器等硬件電路,,并將程序下載進(jìn)行模擬實(shí)測(cè)板級(jí)測(cè)試,所采集數(shù)據(jù)送入MATLAB產(chǎn)生距離向信號(hào)頻譜并分析,。模擬實(shí)測(cè)板級(jí)測(cè)試實(shí)現(xiàn)預(yù)期目的后進(jìn)行現(xiàn)場(chǎng)閉環(huán)測(cè)試,。測(cè)試結(jié)果表明,該系統(tǒng)實(shí)現(xiàn)了FMCW體制下的環(huán)掃SAR距離向成像,。
參考文獻(xiàn)
[1] KLAUSING H,,KEYDEL W.Feasibility of a synthetic aperture radar with rotating antennas(ROSAR)[C].International IEEE Symposium on Radar,,VA,USA,,1990:51-56.
[2] 廖軼,,楊澤民,邢孟道,,等.斜視圓跡環(huán)掃SAR模式特性分析及成像方法[J].西安電子科技大學(xué)學(xué)報(bào)(自然科學(xué)版),,2014,41(1):38-44.
[3] LEE H,,CHO S J,,KIM K E.A ground-based arc-scanning synthetic aperture radar (ArcSAR) system and focusing algorithms[C].2010 IEEE International Geoscience and Remote Sensing Symposium(IGARSS),2010,,38(5):3490-3493.
[4] Shao Yu,,Chen Zhangyou,Wu Xiongbin.Investigation on imaging performance of circular scanning synthetic aperture radar[C].General Assembly and Scientific Symposium(URSI GASS),,2014:1-4.
[5] 廖軼,,邢孟道,保錚.調(diào)頻連續(xù)波圓跡環(huán)掃SAR成像方法[J].系統(tǒng)工程與電子技術(shù),,2015,,9(31):1994-1999.
[6] Liu Yue,Deng Yunkai,,WANG R,,et al.Bistatic FMCW SAR signal model and imaging approach[J].IEEE Transactions on Aerospace and Electronic Systems,2013,,49(3):2017-2028.
[7] 蔡永俊.調(diào)頻連續(xù)波合成孔徑雷達(dá)成像研究與系統(tǒng)實(shí)現(xiàn)[D].北京:中國(guó)科學(xué)院國(guó)家空間科學(xué)中心,,2016.
[8] 劉懌恒.基于FPGA的數(shù)據(jù)采集與處理系統(tǒng)設(shè)計(jì)[D].長(zhǎng)沙:湖南大學(xué),2013.
[9] 詹學(xué)麗,,王巖飛,,王超,等.一種用于合成孔徑雷達(dá)的數(shù)字去斜方法[J].雷達(dá)學(xué)報(bào),,2015,,4(4):474-480.
[10] 張少謙.合成孔徑雷達(dá)原始數(shù)據(jù)的分析方法[J].科學(xué)技術(shù)與工程,2010,,10(10):2487-2489.
[11] 黃世鋒.多模式環(huán)掃合成孔徑雷達(dá)距離向研究與實(shí)現(xiàn)[D].武漢:武漢大學(xué),,2017.
作者信息:
劉靚歡,黃世鋒,,陳章友
(武漢大學(xué) 電子信息學(xué)院,,湖北 武漢430072)