文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.174938
中文引用格式: 梁龍凱,張麗英,,何文超,,等. 概率神經(jīng)網(wǎng)絡多模型卡爾曼濾波定位導航算法[J].電子技術應用,2018,,44(6):60-62,,67.
英文引用格式: Liang Longkai,Zhang Liying,,He Wenchao,,et al. Probabilistic neural network multi-model Kalman filter navigation algorithm[J]. Application of Electronic Technique,2018,,44(6):60-62,,67.
0 引言
擴展卡爾曼濾波(Extend Kalman Filter,EKF)需要一個準確的運動模型,,如果運動載體的運動狀態(tài)不確定,,則擴展卡爾曼濾波的估計偏差將會很大甚至估計失敗。針對這種模型不確定的情況,,BLOM H和BAR-SHALOM Y于1988年提出了交互式多模型(Interacting Multiple Model,,IMM)的次優(yōu)算法[1]。因此采用交互式多模型擴展卡爾曼濾波(Interacting Multiple Model- Extend Kalman Filter,,IMM-EKF)算法可實現(xiàn)運動模型不確定的非線性系統(tǒng)運動載體的衛(wèi)星定位,。
然而IMM-EKF在計算過程中需要計算模型集中所有模型的卡爾曼濾波結果,運算量隨模型集規(guī)模增加[2],,即使在運動載體的運動狀態(tài)符合模型集中的某一模型的情況下,,依然要進行其他模型的計算,且得到次優(yōu)的估計結果[3],。
針對上述不足,,本文引入概率神經(jīng)網(wǎng)絡(PNN)算法,通過離線訓練好的神經(jīng)網(wǎng)絡模型對運動狀態(tài)進行分類,,若運動狀態(tài)與模型集中某模型類型匹配,,則采用單一模型進行EKF得到最優(yōu)估計;若運動狀態(tài)與模型集中任何模型分類都不匹配,,則采用IMM-EKF定位,。
1 擴展卡爾曼濾波(EKF)
離散非線性系統(tǒng)的狀態(tài)空間描述為[4]:
2 GPS/BDS系統(tǒng)濾波模型的建立
選取GPS/BDS系統(tǒng)的狀態(tài)變量為[5]:
式中Wk-1為k-1時刻的系統(tǒng)過程噪聲,是零均值的高斯白噪聲[6],。式中Φ的具體表達形式取決于運動模型的形式[7],,運動模型可參考文獻[5]和[7]中提到的模型。
3 交互式多模型卡爾曼濾波
4 引入反饋的概率神經(jīng)網(wǎng)絡(BP-PNN)
概率神經(jīng)網(wǎng)絡是由SPECHT D F于1990年提出的,,用于解決模式分類及決策問題[8],。李永立等人在此基礎上提出了引入反向傳播機制的概率神經(jīng)網(wǎng)絡[9],,使概率神經(jīng)網(wǎng)絡模型的空間開銷減小,分類精度提高,。BP-PNN結構如圖1所示,,算法如下。
5 仿真
運動軌跡分4個階段,,分別采用不同的運動狀態(tài),,各運動狀態(tài)可遵循不同的狀態(tài)模型,具體運動軌跡如表1所示,。
5.1 實驗1:概率神經(jīng)網(wǎng)絡的離線學習,、訓練
在表1的數(shù)據(jù)中分別提取第一階段“勻速轉彎”前3 s的數(shù)據(jù)和第三階段“勻加速直線”前3 s的數(shù)據(jù),將第一階段數(shù)據(jù)目標歸類定義為1,;將第三階段數(shù)據(jù)目標歸類定義為2;其他兩個階段各提取前3 s數(shù)據(jù),,目標歸類定義為3,。利用各階段前3 s的數(shù)據(jù)進行概率神經(jīng)網(wǎng)絡學習,再利用各階段4~6 s數(shù)據(jù)進行概率神經(jīng)網(wǎng)絡訓練,。采用任意軌跡數(shù)據(jù)進行測試,,仿真結果顯示如表2所示。
實驗結果表明經(jīng)過概率神經(jīng)網(wǎng)絡的離線訓練,,可以比較精確地對輸入數(shù)據(jù)進行分類,,尤其是勻加速直線運動的分類準確率最高。
5.2 實驗2:PNN-EKF的準確性實驗
仿真結果如圖2所示,。
從仿真結果可以看出PNN-EKF的定位精度要高于IMM-EKF,,但在x軸方向起始階段由于概率神經(jīng)網(wǎng)絡對狀態(tài)判斷不準確造成一定程度的偏差,后續(xù)階段及y軸整體精度都優(yōu)于IMM-EKF,。
6 結束語
本文提出一種利用概率神經(jīng)網(wǎng)絡判斷運動狀態(tài),進而采用對應模型進行EKF的GPS/BDS導航定位算法,。該算法當概率神經(jīng)網(wǎng)絡能夠判斷其對應運動模型時,采用單一模型進行最優(yōu)解計算,,如不能判斷準確模型則歸類為“其他”,,“其他”類的數(shù)據(jù)采用IMM-EKF算法。這樣就可以在多數(shù)情況下求得最優(yōu)解,,從而提高精度,。通過仿真實驗證明相較于IMM-EKF,本文算法定位精度有所提高,,從理論推導中可以判斷本文算法當模型集較大時運算時間會有所減少,。
參考文獻
[1] 翟岱亮,雷虎民,,李炯,,等.基于自適應IMM的高超聲速飛行器軌跡預測[J].航空學報,,2016,37(11):3466-3475.
[2] 董寧,,徐玉嬌,,劉向東.一種帶自適應因子的IMM-UKF的GPS/DB-2導航方[J].宇航學報,2015,,36(6):676-683.
[3] 苗少帥,,周峰.IMM迭代無跡Kalman粒子濾波目標跟蹤算法[J].重慶郵電大學學報(自然科學版),2015,,27(1):44-48.
[4] 吳甜甜,,張云,劉永明,,等.北斗/GPS組合定位方法[J].遙感學報,,2014,18(5):1087-1097.
[5] 徐玉嬌.GPS/BD-2組合導航系統(tǒng)定位算法的研究[D].北京:北京理工大學,,2015.
[6] MONTENBRUCK O,,HAUSCHILD A,STEIGENBERGER P,,et al.Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system[J].GPS Solutions,,2013,17(2):211-222.
[7] ZHOU H R,,KUMAR K S P.A ‘current’ statistical model and adaptive algorithm for estimating maneuvering targets[J].Journal of Guidance,,Control,and Dynamics,,1984,,7(5):596-602.
[8] SPECHT D F.Probabilistic neural networks[J].Neural Networks,1990,,3(1):109-118.
[9] 李永立,,吳沖,羅鵬.引入反向傳播機制的概率神經(jīng)網(wǎng)絡模型[J].系統(tǒng)工程理論與實踐,,2014,,34(11):2921-2928.
[10] 苑津莎,尚海昆.基于主成分分析和概率神經(jīng)網(wǎng)絡的變壓器局部放電模式識別[J].電力自動化設備,,2013,,33(6):27-31.
[11] MICHAEL R B,JAY D.Constructive training of probabilistic neural networks[J].Neurocomputing,,1998,,19(1-3):167-183.
作者信息:
梁龍凱1,2,張麗英1,,何文超1,,2,呂緒浩1,,2
(1.東北師范大學 人文學院 理工學院 汽車電子與服務工程系,,吉林 長春130117;
2.吉林省高校汽車電子技術工程研究中心,,吉林 長春130117)