《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 可編程邏輯 > 業(yè)界動(dòng)態(tài) > 觀點(diǎn) | 文因互聯(lián) CEO 鮑捷:確保搞砸人工智能項(xiàng)目的十種方法

觀點(diǎn) | 文因互聯(lián) CEO 鮑捷:確保搞砸人工智能項(xiàng)目的十種方法

2018-08-03
關(guān)鍵詞: 人工智能 SVoice Web本體語言

做成一件事兒不容易,,而坑恒在,。

鮑捷博士于5月10日在將門創(chuàng)投的線上 talk 中盤點(diǎn)了人工智能項(xiàng)目的大坑小坑,選出了看上去非常反常識(shí)的十個(gè)經(jīng)典坑,。

這是一篇大實(shí)話合集,,但別絕望,,最后將會(huì)放出從二十年踩坑經(jīng)驗(yàn)中總結(jié)出的彩蛋,共勉,。

作者介紹

鮑捷博士,,文因互聯(lián) CEO。擁有20年學(xué)術(shù)界和工業(yè)界的相關(guān)經(jīng)驗(yàn),。美國Iowa State University人工智能博士,,RPI博士后,MIT訪問研究員,,W3C OWL(Web本體語言)工作組成員,,前三星美國研發(fā)中心研究員,三星問答系統(tǒng)SVoice第二代系統(tǒng)核心設(shè)計(jì)師,。主要研究領(lǐng)域涵蓋人工智能的諸多分支,,包括機(jī)器學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò),、數(shù)據(jù)挖掘,、自然語言處理、形式推理,、語義網(wǎng)和本體工程等,,發(fā)表了70多篇領(lǐng)域內(nèi)相關(guān)論文。是中文信息學(xué)會(huì)語言與知識(shí)計(jì)算專委會(huì)委員,,中國計(jì)算機(jī)協(xié)會(huì)會(huì)刊編委,,W3C顧問會(huì)員會(huì)代表。2010年以來關(guān)注金融智能化的研究和應(yīng)用,,成果有XBRL語義模型,,基于知識(shí)圖譜的基本面分析、金融問答引擎,、財(cái)務(wù)報(bào)告自動(dòng)化提取,、自動(dòng)化監(jiān)管等。

以下為演講原文:


鮑捷博士:我今天的題目是《確保搞砸人工智能項(xiàng)目的十種方法》,,按照這十種方法,基本上可以搞砸項(xiàng)目。(笑)

之所以能夠講這個(gè)題目,,是因?yàn)槲易约褐耙哺阍疫^很多項(xiàng)目,,下面列表里超過一半的項(xiàng)目最后是失敗的:

微信圖片_20180803161805.jpg

我開始想,為什么大部分的項(xiàng)目最后做不成,?

我經(jīng)歷了好幾次很痛苦的時(shí)刻,,比如剛到RPI(倫斯特理工學(xué)院)做博士后,這個(gè)學(xué)校有全美做知識(shí)圖譜最好的實(shí)驗(yàn)室,,實(shí)驗(yàn)室的James Hendler和Deborah Mcguinness,,都是這個(gè)領(lǐng)域最好的老師。

我在那里做了一個(gè)知識(shí)管理系統(tǒng),,在我看來,,我們是世界上最好的語義網(wǎng)實(shí)驗(yàn)室,也是最專業(yè)的一群人,,不用這個(gè)技術(shù)來武裝自己好像說不過去,,所以我就做了一個(gè)語義檢索系統(tǒng),但是后來沒有人用,。

我就在反思到底問題在哪,,為什么這行真正最好的專家,做出這樣一個(gè)系統(tǒng),,連自己都不用,?

微信圖片_20180803161854.jpg

我不停地在想,人工智能項(xiàng)目失敗的核心原因到底有哪些,?

當(dāng)然,,后來經(jīng)歷了更多的失敗?;谶@些直接或者間接失敗的經(jīng)歷,,我逐漸總結(jié)出來確保一個(gè)項(xiàng)目會(huì)失敗的一些原因。這些原因很多時(shí)候看起來是反直覺的,,我會(huì)逐一地跟大家講,。

在最后,我也會(huì)總結(jié)如果想要避免這10個(gè)坑,,應(yīng)該做什么,。

NO.1 一下子砸很多的錢

第一種確保你的項(xiàng)目失敗的方法:一下子砸很多的錢。

我目前也在創(chuàng)業(yè),,有VC問我:“你們做的這個(gè)事,,如果BAT砸很多的錢,是不是就一下子能趕上你們,?”

我說不會(huì),,通常舉的例子,,就是日本的五代機(jī)。當(dāng)初日本舉全國之力,,砸了幾百億日元,,最終沒有做成。

五代機(jī)是什么,?1970年代末是人工智能的第一次冬天開始回升的時(shí)候,。80年代開始進(jìn)入人工智能第二個(gè)高峰。這時(shí)候,,日本啟動(dòng)了一個(gè)新的項(xiàng)目,,叫第五代計(jì)算機(jī)。

什么叫第五代計(jì)算機(jī),?前四代計(jì)算機(jī),,分別是電子管的、晶體管的,、集成電路的,,和大規(guī)模集成電路的。日本到第五代計(jì)算機(jī)的時(shí)候,,他們認(rèn)為要想做人工智能,,就必須用人工智能的專有硬件。

微信圖片_20180803161941.jpg

(《知識(shí)信息處理系統(tǒng)的挑戰(zhàn):第五代計(jì)算機(jī)系統(tǒng)初步報(bào)告》中第五代計(jì)算機(jī)系統(tǒng)概念圖)

這個(gè)話是不是聽起來很耳熟,?最近在做深度學(xué)習(xí)的時(shí)候,,看到了很多關(guān)于深度學(xué)習(xí)芯片的想法。這個(gè)想法并不新,,因?yàn)樵?0年前,,日本人在五代機(jī)的計(jì)算里,就已經(jīng)有這樣的想法了,,只是當(dāng)時(shí)的人工智能芯片,,不是現(xiàn)在深度學(xué)習(xí)的芯片,而是Prolog的芯片,。

Prolog是人工智能的一種語言,,主要是一種邏輯建模語言。如果能夠用Prolog來建計(jì)算機(jī),,計(jì)算機(jī)就可以進(jìn)行思維,,可以處理各種各樣認(rèn)知的任務(wù)。這是一個(gè)非常大型的國家項(xiàng)目,,最終花了幾百億日元,,耗掉10年時(shí)間以后,在1992年,,終于勝利地失敗了,。

這不是個(gè)例,,很多大型的項(xiàng)目,最后都失敗了,。

一開始砸很多錢,,為什么還會(huì)失敗,?你要想,做一個(gè)項(xiàng)目,,通常是有目標(biāo)的,。當(dāng)你有一個(gè)大預(yù)算的時(shí)候,你的目標(biāo)通常也定得很高,。像五代機(jī)的目標(biāo),,不單當(dāng)時(shí)是做不到的,三十年后的今天,,也是做不到的,。

雖然五代機(jī)失敗了,但是日本的人工智能技術(shù),,在五代機(jī)的研發(fā)當(dāng)中得到了很大的提升,,所以到了20年后,語義網(wǎng)興起的時(shí)候,,日本的語義網(wǎng)研究水平還是相當(dāng)好的,,那些錢沒有白花,它培養(yǎng)了很多的人才,。

在日本做五代機(jī)的同時(shí),,美國也有類似的研究,主要是LISP machine,,LISP是人工智能的另外一種語言,,也是邏輯建模的語言。其中有一個(gè)公司叫think machine,。當(dāng)時(shí)至少有100家LISP公司,。

為什么單獨(dú)要提到think machine?創(chuàng)始人在失敗之后沉寂了一段時(shí)間,,開了一個(gè)新的公司叫MetaWeb,,MetaWeb是2005年的時(shí)候成立的,這個(gè)公司有一個(gè)產(chǎn)品叫Freebase,,用Wikipedia做了一個(gè)很好的知識(shí)庫,。

微信圖片_20180803162003.jpg

2010年這個(gè)公司被谷歌收購,改名叫谷歌知識(shí)圖譜,。所以今天谷歌的知識(shí)圖譜有很多歷史淵源,,可以追溯到30年前LISP machine的研究里面,。

羅馬不是一天建成的,所以一下子砸很多錢,,就會(huì)導(dǎo)致項(xiàng)目的目標(biāo)過高,,從而導(dǎo)致這個(gè)項(xiàng)目有極大的失敗概率。

我曾經(jīng)遇到過一個(gè)大型國企的人,,他跟我說,,他們要花3000萬建一個(gè)企業(yè)內(nèi)部知識(shí)管理系統(tǒng)。我就問他,,你那個(gè)3000萬是怎么投的,?他說我第一年就要投3000萬。然后我沒說話,,因?yàn)槲业南敕ㄊ沁@個(gè)項(xiàng)目一定會(huì)失敗,。后來這個(gè)項(xiàng)目的的確確失敗了。

也有一些大公司投比這還多得多的錢來做AI項(xiàng)目,。這些都不一定讓事情更容易成功,。

這是第一種方法,一下子砸很多錢,。

NO.2 根據(jù)最新論文來決定技術(shù)路線

第二種方法:根據(jù)最新的論文來決定技術(shù)路線,,這可能也是一個(gè)反常識(shí)的事情。

因?yàn)樽钚碌募夹g(shù)不是最好的技術(shù),,要注意,,在工程領(lǐng)域里面,通常面臨著實(shí)際的約束來解決問題的,。而論文是一種實(shí)驗(yàn)室的環(huán)境,,是不一樣的。

比如說實(shí)驗(yàn)室里,,可以假設(shè)有一些數(shù)據(jù),,可以假設(shè)這些數(shù)據(jù)已經(jīng)被集成了,被清洗了,,是沒有噪聲的,。可以假設(shè)目標(biāo)是清晰的,,但所有的這些假設(shè)在現(xiàn)實(shí)中都不一定成立的,。

最好的例子,就是信息抽取,,這是2013年的EMNLP上的一篇文章,,我拆出來的圖。

微信圖片_20180803162045.jpg

這個(gè)圖告訴我們做NLP的論文和實(shí)際的工業(yè)系統(tǒng)所采用的技術(shù)路線有什么不一樣的地方。

從2003年到2012年整整10年,,學(xué)術(shù)界所發(fā)表的自然語言處理論文的實(shí)體抽取子領(lǐng)域里,,完全用機(jī)器學(xué)習(xí)的方法論文占到了75%,混合機(jī)器學(xué)習(xí)和基于規(guī)則的方法論文占到了21%,,完全只用規(guī)則方法的論文,,只有百分之一點(diǎn)幾,非常低的比例,。但是當(dāng)看到工業(yè)界的實(shí)際應(yīng)用的時(shí)候,,發(fā)現(xiàn)了完全不同的技術(shù)占比分布,用規(guī)則方法的占到了45%,。

如果光看大型的供應(yīng)商,,比如說IBM這樣的公司,67%的軟件是完全基于規(guī)則方法的,。完全基于統(tǒng)計(jì)方法即machine learning方法的軟件,在所有的供應(yīng)商那里占33%,,在大型的供應(yīng)商那里只占了17%,。

所以從學(xué)術(shù)界的研究到工業(yè)界的實(shí)踐,有一個(gè)非常巨大的差異,。為什么會(huì)有這樣的差異,?就是我剛才提到的,在發(fā)表論文的時(shí)候,,完全不需要考慮現(xiàn)實(shí)中所會(huì)遇到的那些約束條件,。在知識(shí)提取、實(shí)體提取領(lǐng)域,,盡管現(xiàn)在從理論上來說,,已經(jīng)解決了,比如說實(shí)體識(shí)別問題,、NER問題,、分詞問題,但是到了真正現(xiàn)實(shí)的語料中,,發(fā)現(xiàn)這些方法都不好用,。這也可以用另外一個(gè)問題來驗(yàn)證這一點(diǎn),就是問答系統(tǒng),。

今天看到大部分的論文——我沒有做精確的統(tǒng)計(jì),,只是基于模糊定性的看法——能看到大部分發(fā)表的問答系統(tǒng)的論文都是基于統(tǒng)計(jì)方法的。特別是這兩年基于NLP的方法,,尤其是基于端到端的方法的,。無一例外,能夠真正在工業(yè)中應(yīng)用起來的問答系統(tǒng),,除了小冰這樣的閑聊系統(tǒng)之外,,真正的面向解決任務(wù)型的問答系統(tǒng),,全部都是用規(guī)則系統(tǒng)的。我還不知道哪一個(gè)是用深度學(xué)習(xí)的,,當(dāng)然也可能有用在某一個(gè)具體的細(xì)節(jié),,或者某一個(gè)組件上面,我沒有見到過用于整體架構(gòu)上,。

所以當(dāng)決定一個(gè)工程問題技術(shù)路線的時(shí)候,,不一定要按照最新的論文趨勢來做這件事情,甚至,,論文和十年之后的技術(shù)都不一定有相關(guān)性,。一定要根據(jù)現(xiàn)實(shí)的情況,根據(jù)現(xiàn)實(shí)的約束,,來決定技術(shù)路線,。

NO.3 脫離真正的應(yīng)用場景

第三種方法:如果脫離了真正的應(yīng)用場景,項(xiàng)目就注定會(huì)失敗,。

這里我用OWL2來說明,。OWL2是一種語言,對(duì)于做語義網(wǎng)的同學(xué)們很熟悉了,。

在Web上所知道的所有的這些標(biāo)準(zhǔn)化的格式,,比如說HTML都是W3C,即萬維網(wǎng)聯(lián)盟設(shè)計(jì)的,。萬維網(wǎng)聯(lián)盟也會(huì)負(fù)責(zé)Web上其他的協(xié)議,,其中有一個(gè)協(xié)議叫OWL。它是在講,,在互聯(lián)網(wǎng)上如何表達(dá)我們的知識(shí),。

比如說,一個(gè)餐館要發(fā)布它的菜單,,該用什么樣的格式來發(fā)布,?或者我現(xiàn)在要在網(wǎng)上發(fā)布我的簡歷,希望被谷歌更好地檢索到,。我要告訴谷歌,,我是一個(gè)人,我姓什么,,叫什么,,出生年月是什么,我應(yīng)該用什么樣的格式發(fā)布這樣的數(shù)據(jù),。其中一個(gè)格式就是OWL,。OWL的第一個(gè)版本在2004年發(fā)布,第二個(gè)版本是在2010年發(fā)布。

OWL WORKING GROUP比較活躍的工作組的成員里面,,有相當(dāng)多的知名大學(xué)的老師,,還有一些知名公司的科學(xué)家,包括IBM,、Oracle,、惠普。你們注意到,,我剛才提到這些大公司的時(shí)候,,有一些名字沒有出現(xiàn),比如說谷歌和Facebook,。

OWL2本來希望想做的事情,,是設(shè)計(jì)如何在網(wǎng)上表達(dá)并發(fā)布日常生活衣食住行信息的。但是,,最終工作組成員的構(gòu)成,,一種是大學(xué)研究人員,另外一種是大公司做企業(yè)級(jí)應(yīng)用的,,大部分是遠(yuǎn)離場景的,。

最終設(shè)計(jì)出來的產(chǎn)品,也就是OWL2語言,,脫離了真正想去服務(wù)的那個(gè)場景。OWL WORKING GROUP在開會(huì)的時(shí)候,,寫了大概好幾十個(gè)應(yīng)用案例,,但是大部分的案例都是這樣的:一個(gè)制藥公司要做一個(gè)藥,應(yīng)該怎么表達(dá)制藥的知識(shí),,或者一個(gè)醫(yī)生如何表達(dá)病歷,、疾病或基因,大體上都是這樣的應(yīng)用,。沒有任何一個(gè)案例是在講述在網(wǎng)上如何找一個(gè)朋友,,或者如何跟朋友聊天,或者如何去訂餐,,日常生活中的案例都是沒有的,。

OWL2最終寫出來以后,有600頁紙,,這是一個(gè)非常復(fù)雜的語言,。事實(shí)上,也就是在一些少量的企業(yè)級(jí)應(yīng)用里面被用到了,,在真正的日常應(yīng)用當(dāng)中,,成功的案例幾乎沒有。這就是個(gè)典型的脫離了應(yīng)用場景的項(xiàng)目,所以這個(gè)項(xiàng)目,,花了很多錢,,最終沒有達(dá)到真實(shí)想達(dá)到的目標(biāo)。

NO.4 使用過于領(lǐng)先的架構(gòu)

第四種方法,,使用過于領(lǐng)先的架構(gòu),。

這也是跟前面第二種方法相呼應(yīng)的,第二種方法說,,你不能根據(jù)最新的論文來決定你的技術(shù)路線,。第四種方法是在講,如果你使用了一種特別先進(jìn)的架構(gòu),,反而有可能導(dǎo)致你的項(xiàng)目失敗,。

Twine在2007年被稱為世界上第一個(gè)大規(guī)模的語義網(wǎng)的應(yīng)用。當(dāng)時(shí)是一個(gè)明星企業(yè),,這個(gè)公司到了2010年的時(shí)候關(guān)門了,。為什么?Twine在成立的時(shí)候,,想做一個(gè)語義書簽的應(yīng)用,。比如說我讀了一篇文章,我覺得很好,,把它保存下來,,留著以后再讀。Twine的機(jī)器人就會(huì)分析我保存下來的這篇文章到底在說啥,,然后給這個(gè)文章一個(gè)語義標(biāo)簽,。如果有人訂閱了我的標(biāo)簽,他就可以不斷地看到我這個(gè)標(biāo)簽下收藏的好東西,,就這么一個(gè)想法,。

Twine在底層用了一個(gè)叫RDF的新數(shù)據(jù)庫,RDF是一種語義網(wǎng)的語言,,比關(guān)系數(shù)據(jù)庫增強(qiáng)很多,,它是可以進(jìn)行推理的數(shù)據(jù)庫。但是當(dāng)Twine用戶量達(dá)到200萬的時(shí)候,,它就遇到了一個(gè)瓶頸,,數(shù)據(jù)庫的性能不夠。所以Twine的CEO就決定,,開發(fā)一個(gè)新的數(shù)據(jù)庫,。

當(dāng)時(shí)這個(gè)公司大概是40個(gè)人,用20個(gè)人來研發(fā)基礎(chǔ)性的東西——一個(gè)新的語義數(shù)據(jù)庫,。2008年的時(shí)候,,情況還不錯(cuò),,他們發(fā)現(xiàn)自己做的東西是個(gè)很好的東西,突然就在想,,我們做的東西為什么只搜索書簽,?完全可以搜索整個(gè)Web上的東西。于是他們就做了一次轉(zhuǎn)型,,去做整個(gè)Web的語義搜索,。步子太大,就把公司拖死了,。到了2008年經(jīng)濟(jì)危機(jī)爆發(fā)的時(shí)候,,資金鏈斷裂,撐了一年以后就死了,。

在死的時(shí)候,,Twine的CEO Nova Spivack ,是我們領(lǐng)域非常值得尊重的一個(gè)先行者,,也是一個(gè)技術(shù)大拿,,同時(shí)也是一個(gè)非常成功的投資人。他就檢討了Twine的失敗,。他說我試圖在太多的地方進(jìn)行革新,,我應(yīng)該要么革新一個(gè)平臺(tái),要么革新一個(gè)應(yīng)用,,要么革新一個(gè)商業(yè)模式,,但是我似乎在太多的地方都進(jìn)行革新了,而且我使用了一種非常超前的架構(gòu),,就是RDF數(shù)據(jù)庫,,導(dǎo)致了我要追求的目標(biāo)太大,我無法達(dá)到這個(gè)目標(biāo),。

我想他說的這個(gè)話,,即使到今天,,也是非常值得思考的,。

這個(gè)項(xiàng)目相關(guān)的分析文章,我差不多每過兩年都要仔仔細(xì)細(xì)地看一遍,。Twine失敗了以后,, Nova Spivack 對(duì)公司進(jìn)行了一次轉(zhuǎn)型,成立了一個(gè)新的公司叫 Bottlenose,,還是用了同樣的技術(shù),,用在了更聚焦的應(yīng)用場景上,從2C的服務(wù)轉(zhuǎn)到2B的服務(wù)上去,。

Bottlenose這個(gè)公司,,到目前為止已經(jīng)8年時(shí)間了,,還是很成功的。2B的應(yīng)用相對(duì)而言不太需要這么大量的數(shù)據(jù),,不用解決系統(tǒng)可伸縮性問題,,突出了這個(gè)系統(tǒng)最核心的優(yōu)勢,即語義分析和理解能力,。

像Twine這樣失敗的例子是不罕見的,。用一個(gè)過于先進(jìn)的架構(gòu)的時(shí)候,通常會(huì)面臨一開始很難去預(yù)期的一些風(fēng)險(xiǎn),,甚至不僅僅是像RDF數(shù)據(jù)庫這樣的小眾的產(chǎn)品,,更加大眾的產(chǎn)品,也有可能會(huì)遇到這樣的情況,。

比如說有人經(jīng)常會(huì)問我說,,你們做知識(shí)圖譜的應(yīng)用,是不是一定要用圖數(shù)據(jù)庫,?我就通?;卮鹫f不一定。

如果你熟悉圖數(shù)據(jù)庫,,比如說你對(duì) Neo4j 整個(gè)運(yùn)維都非常地熟悉了,,你知道它的JAVA虛擬機(jī)如果出錯(cuò)的時(shí)候,該如何處理,;你知道它內(nèi)存不夠的時(shí)候,,該怎么辦;你知道怎么進(jìn)行數(shù)據(jù)的分片,,知道怎么進(jìn)行主從的復(fù)制……所有這些運(yùn)維問題都很熟悉的時(shí)候,,你就可以試一試上這個(gè)應(yīng)用。

在上應(yīng)用的時(shí)候不要太著急,,如果你只是一個(gè)在線應(yīng)用,,可以放一放,先把離線的這部分運(yùn)維的工作搞清楚以后,,然后再上線,,也可以先用一個(gè)小數(shù)據(jù)集試一試??傊?,步子不要太大。

NO.5 不能管理用戶預(yù)期

第五種方法,,不能管理用戶預(yù)期,。

這是一個(gè)特別常見的項(xiàng)目失敗的原因,甚至不是因?yàn)榧夹g(shù)上做不到,,而是用戶預(yù)期更大,。

我先說一個(gè)技術(shù)上完全做不到的,,比如說有一個(gè)銀行,他們推出了所謂的機(jī)器人大堂經(jīng)理,,你可以跟一個(gè)機(jī)器人對(duì)話辦理業(yè)務(wù),。顯然,這個(gè)東西如果真的能夠做到,,應(yīng)該是非常令人吃驚的事情,,這已經(jīng)遠(yuǎn)遠(yuǎn)超出當(dāng)前技術(shù)邊界。

最近有一個(gè)比較有名的騙局,,就是機(jī)器人索菲亞,。沙特阿拉伯還給了它第一個(gè)公民的身份,這是一個(gè)非常典型的詐騙,。

微信圖片_20180803162121.jpg

這種類型的機(jī)器人是不太可能出現(xiàn)的,。

在其他應(yīng)用當(dāng)中也會(huì)遇到這樣的情況,尤其是對(duì)話機(jī)器人是最容易引起用戶的圖靈測試欲望,。當(dāng)用戶發(fā)現(xiàn)跟他對(duì)話的是一個(gè)機(jī)器人的時(shí)候,,他就會(huì)試圖去調(diào)戲這個(gè)機(jī)器人。比如很多人都會(huì)去調(diào)戲siri,,所以siri積累了很多段子,,準(zhǔn)備應(yīng)對(duì)大家調(diào)戲。

如果你是提供了一個(gè)搜索引擎,,那么大家的預(yù)期是比較低的,。但如果你以一個(gè)問答引擎的形式,提供同樣的內(nèi)容,,大家的預(yù)期就會(huì)高很多,。

我們最早提供了一個(gè)終端級(jí)產(chǎn)品,用戶的評(píng)價(jià)就不是特別好,,后來我們調(diào)整了一下定位,,把它調(diào)整成用搜索界面來提供服務(wù),系統(tǒng)頂層的智能程度沒有太大改變,,但是用戶的預(yù)期和評(píng)價(jià)馬上就好起來了,,因?yàn)橛脩纛A(yù)期降低了。這樣的語義搜索引擎,,相比其他的搜索引擎,,其實(shí)還是好一些的,。

對(duì)話機(jī)器人其實(shí)也一樣,,如果你給用戶的預(yù)期,是能夠跟他平等對(duì)話的機(jī)器人的話,,通常是很難達(dá)到的,。用戶通常玩一玩就會(huì)發(fā)現(xiàn)好傻,,然后就不玩了,所以大家注意到谷歌機(jī)器人跟Apple的siri機(jī)器人定位有很大區(qū)別,,谷歌機(jī)器人不僅僅做對(duì)話,,它能夠預(yù)先幫你去做一些事情,甚至主動(dòng)地去幫你做一些自動(dòng)化的事情,,其實(shí)這是非常聰明的選擇,。

目前能夠跟人長期進(jìn)行交互的機(jī)器人,其實(shí)是一個(gè)更加偏秘書型的,,或者說它就是一個(gè)幫助你進(jìn)行任務(wù)自動(dòng)化的機(jī)器,。如果你是立足于對(duì)話,其實(shí)很難滿足用戶預(yù)期,,但是如果你立足于自動(dòng)化,,就比較容易達(dá)到用戶預(yù)期。同樣的技術(shù),,你用不同的方法去服務(wù)用戶,,用戶預(yù)期不一樣,用戶的感覺就完全不一樣,。所以要盡可能地讓用戶感知到產(chǎn)品的成熟度,,在他的預(yù)期之上,這個(gè)產(chǎn)品才有可能成功,,他才愿意付費(fèi),。


NO.6 不理解認(rèn)知復(fù)雜性

第六點(diǎn)叫做不能理解認(rèn)知復(fù)雜性。

這個(gè)事情我在剛開始的時(shí)候就提到了,,這個(gè)例子就是Semantic Wiki,,我寫了很多個(gè)這樣的系統(tǒng),Semantic Wiki是什么呢,?大家肯定都用過維基百科或者百度百科,,這只是一個(gè)典型的維基系統(tǒng),有很多人去寫一個(gè)頁面,。Semantic Wiki也是基于協(xié)作的,,也是一個(gè)Wiki,只不過在這個(gè)Wiki的頁面上,,你可以打一些標(biāo)簽,,加一些注釋。

它可以解決什么問題呢,?比如可以解決頁面之間的數(shù)據(jù)一次性問題,,就是一個(gè)頁面上的數(shù)據(jù),可以流到另外一個(gè)頁面上去,,舉個(gè)例子,,比如說在維基百科上面,,可以看到很多國家的GDP,就是國民生產(chǎn)總值,,在中國的頁面上,,會(huì)有中國GDP,在亞洲國家的GDP列表上面,,也會(huì)有中國GDP,,然后在世界國家的GDP列表上,也會(huì)有中國GDP,,那么是不是可以有一個(gè)機(jī)制,,比如在一個(gè)頁面,寫下中國的GDP是多少,,只要這個(gè)數(shù)字改變,,其他所有頁面上的數(shù)字會(huì)同步改變,用Semantic Wiki技術(shù)就可以做到這一點(diǎn),。當(dāng)然Semantic wiki還可以做很多很酷的其他的事情,,很強(qiáng)大。

我從2004年開始就開始寫Semantic Wiki系統(tǒng),,前前后后寫了三個(gè)Semantic Wiki系統(tǒng),,后來我加入了一個(gè)開源社區(qū),叫 Semantic MediaWiki,, 基于這樣的系統(tǒng),,我做了一個(gè)很好的知識(shí)管理系統(tǒng)。

2010年我們?cè)噲D來推廣這個(gè)系統(tǒng),,當(dāng)時(shí)是做了一個(gè)實(shí)驗(yàn),,也是一個(gè)美國的國家機(jī)構(gòu)委托我們做的,就是要測試用這種協(xié)作的知識(shí)管理系統(tǒng)來記錄一些事件,,能不能記錄得很好,,好到可以后面讓機(jī)器自動(dòng)進(jìn)行處理。

當(dāng)時(shí)做的對(duì)比實(shí)驗(yàn)是找了一群RPI的計(jì)算機(jī)系本科生,,讓他們來看電視連續(xù)劇,,看完以后描述情節(jié)。一部分人用自然語言來進(jìn)行描述,,一部分人用Semantic Wiki,,以更加結(jié)構(gòu)化的方式來進(jìn)行描述。然后再找了學(xué)生來分別閱讀前兩組學(xué)生的描述,,最后讓他們來做題,,看哪個(gè)組能夠更精準(zhǔn)地來復(fù)原電視劇情節(jié)。最后得到的結(jié)果發(fā)現(xiàn)是用自然語言描述是更容易,就是描述得更精準(zhǔn),,速度更快。

然后我們仔細(xì)去看那些學(xué)生寫的結(jié)構(gòu)化的描述,,發(fā)現(xiàn)是錯(cuò)誤百出,,比如說張三擁抱了李四,對(duì)于一般的所謂有過知識(shí)工程訓(xùn)練的人來看,,很明顯擁抱應(yīng)該是一個(gè)關(guān)系,,張三和李四應(yīng)該是兩個(gè)人,一個(gè)是主語,,一個(gè)是賓語,,那么就應(yīng)該是主謂賓,張三擁抱李四是很清楚的一個(gè)知識(shí)建模,,但是相當(dāng)多的學(xué)生,,他們把這么一個(gè)特別簡單的建模就給搞錯(cuò)了,他們沒有辦法理解什么叫概念,?什么叫關(guān)系,?什么叫屬性?甚至他們不知道什么叫主語和賓語,?然后發(fā)現(xiàn)在一開始設(shè)想這件事情的時(shí)候,,忽視了絕大多數(shù)的人,在他們的教育生涯中比如高中教育里面,,是沒有結(jié)構(gòu)化思維的訓(xùn)練的,,這是一種事先無法意識(shí)到的認(rèn)知復(fù)雜性。

由于我們都經(jīng)過十年以上的訓(xùn)練,,所以就完全把這些東西當(dāng)成是天然的事情,。后來在OWL WORKING GROUP也遇到了同樣的事情,有人說這個(gè)東西太復(fù)雜了,,其中有一個(gè)邏輯學(xué)家就抗議說,,這東西不復(fù)雜,這東西在計(jì)算機(jī)上跑的時(shí)候,,它的算法復(fù)雜性只是多項(xiàng)式復(fù)雜性而已,,然后我聽了這句話以后,突然意識(shí)到了一個(gè)事情,,就是在這些邏輯學(xué)家的腦子里面,,他們所提到的復(fù)雜性是指一個(gè)語言對(duì)于機(jī)器的復(fù)雜性,所以我們通常把它稱為計(jì)算復(fù)雜性,。

但是實(shí)際上普通人所理解的復(fù)雜性不是這樣的,,比如說你半頁紙就能說明白的東西,那是一個(gè)簡單的東西,如果讓我看到20頁紙,,才能看明白,,那這個(gè)東西是一個(gè)復(fù)雜的東西。所以一個(gè)技術(shù),,你能不能夠讓程序員用起來,,能不能讓用戶用起來,最核心的事情,,你是不是能夠讓他們?cè)谡J(rèn)知上面覺得這東西,,一看就懂,一聽就懂,,一打開就懂,,不用解釋,這才叫簡單,。

在很多算法的設(shè)計(jì)上面也好,,文檔的設(shè)計(jì)上面也好,應(yīng)用的設(shè)計(jì)上也好,,它最終能不能用得好,,關(guān)鍵是讓人感覺到它簡單好用,這就是一個(gè)很重要的因素,。斯坦福Parser,,為什么在NLP領(lǐng)域里面被用的這么廣,一個(gè)很重要的原因,,它的文檔寫的好,,每一個(gè)類都有文檔,提供了足夠多的案例,。

所以好的文檔可以極大地降低一個(gè)產(chǎn)品的認(rèn)知復(fù)雜性,,即使你的產(chǎn)品本身是復(fù)雜的,你把文檔寫好,,也足以有助于推廣這個(gè)產(chǎn)品,,所以盡可能地讓能夠接觸到你產(chǎn)品的人,不管是搞語言的,,搞技術(shù)的,,搞算法的人都感覺到這東西簡單,是保證你的產(chǎn)品成功的一個(gè)關(guān)鍵,。

NO.7 專業(yè)性不足

第七點(diǎn),,這一點(diǎn)就很好理解了,專業(yè)性不足,。

我經(jīng)常會(huì)遇到這樣一些人,,說某某公司現(xiàn)在想做一個(gè)問答系統(tǒng),希望投入三五個(gè)人,可能大多數(shù)情況下沒有博士,,多數(shù)情況下可能就是一個(gè)工程人員,,試圖很快的時(shí)間,兩三個(gè)月之內(nèi),,甚至三五個(gè)月之內(nèi),,把這樣一個(gè)東西做出來,也是一種幻想,。當(dāng)然我不會(huì)直接說破,。

人工智能產(chǎn)品,,的的確確是有它的專業(yè)性的,。很多機(jī)構(gòu)想試圖自己去做這樣的事情,花了1000萬,、2000萬,、3000萬冤枉錢,結(jié)果做不到,。確實(shí),,如果沒有一個(gè)足夠?qū)I(yè)的人是很難把這種事情給做成的。

我也經(jīng)歷了很多這樣的事情,,在曾經(jīng)做過的一個(gè)語義理解系統(tǒng)里面,,也經(jīng)歷了這樣的問題。我想能夠完成這樣一個(gè)系統(tǒng),,實(shí)際上是要綜合很多不同的算法,,不是一個(gè)算法就能夠解決掉的。比如說,,從正面的例子來看,,IBM Watson 系統(tǒng)里面有幾十種不同的算法,有機(jī)器學(xué)習(xí)的算法,,有自然語言處理的算法,,有知識(shí)圖譜的算法。你要把所有的這些算法恰到好處地組合在一起,,拿捏的尺度就是一個(gè)特別重要的能力,。你該用什么樣的東西,你該不用什么樣的東西,。

比如說規(guī)則系統(tǒng),,任何一個(gè)人都可以寫10條正則表達(dá)式,這是沒有問題的,。但是如果你能夠?qū)懞?00條正則表達(dá)式,,那你一定是一個(gè)非常優(yōu)秀的工程人員,你的軟件工程能力很過硬。如果你能夠管理好1,000條正則表達(dá)式,,那你一定是一個(gè)科班出身的,,有專業(yè)級(jí)的知識(shí)管理訓(xùn)練的人。如果你能夠真正地管理好10,000條正則表達(dá)式,,那你一定是一個(gè)有非常豐富的規(guī)則管理經(jīng)驗(yàn)的人,。

當(dāng)然我說的1,000條、10,000條,,并不是說你 copy paste 10,000次,,改其中幾個(gè)字,那個(gè)不算,。人工智能的很多事情,,困難就在這兒。你到網(wǎng)上去拿一個(gè)什么開源包啥的,,你把它做到80%,,都很容易做得到。但難度就在于最后的20%,,通??赡苄枰?8%、99%的正確率,,才能夠滿足用戶的需求,,但是如果專業(yè)性不夠,最后的這些點(diǎn)是非常難的,。

打個(gè)比方說,,你要登月的話,你需要的不是梯子,,是火箭,。你搬個(gè)梯子,最后只能爬到樹上去,,再也沒辦法往上走了,。你需要的是停下來造火箭,造火箭就是專業(yè)性,,如果專業(yè)性不足,,你永遠(yuǎn)只是停留在80%的水平上,再也升不上去,。

回到剛才講的語義理解的項(xiàng)目,。當(dāng)時(shí)就遇到了蠻多困難,要能夠集成規(guī)則的方法,,集成統(tǒng)計(jì)的方法,,集成自然語言處理的方法,。當(dāng)時(shí)全球有很多實(shí)驗(yàn)室一起來做這件事情,但缺這樣一種角色,,能夠把所有的尺度拿捏得特別好的,。

其實(shí)IBM把Watson系統(tǒng)做出來,也是經(jīng)歷了很多內(nèi)部變遷,,包括項(xiàng)目管理人的變化,,包括各種技術(shù)選型的變化,能夠做到這一些,,這種人才是非常短缺的,。在中國,能夠真正從頭到尾把一個(gè)語義的理解系統(tǒng)架構(gòu)做好的人,,是非常非常少的,,也許10個(gè),也許20個(gè),,數(shù)量確實(shí)不多,。我相信在其他人工智能領(lǐng)域,,也面臨著同樣的情況,。

專業(yè)性也不會(huì)僅僅只局限于程序或者技術(shù)這一塊,人工智能的產(chǎn)品經(jīng)理,,人工智能項(xiàng)目的運(yùn)營,,還有整個(gè)后面的知識(shí)系統(tǒng),數(shù)據(jù)的治理,,都是需要很專業(yè)的人來做,,現(xiàn)在這些人才都非常地短缺。

NO.8 工程能力不足

第八種方法就是工程能力不足,。

我的博士論文是一個(gè)分布式推理機(jī),,但因?yàn)榫幊棠芰Σ粔颍恢钡轿耶厴I(yè)為止,,都沒有能夠把它實(shí)現(xiàn)出來,。當(dāng)然后來到了2012年、2013年之后,,圖計(jì)算,,包括基于消息交換的圖計(jì)算出來之后,那時(shí)候我再來做分布式推理機(jī)就比較容易了,。

但這是我特別大的一個(gè)教訓(xùn),。

在這之后,我就比較關(guān)注,,如果做一件事情,,先能夠把我的工程能力補(bǔ)足,。這個(gè)工程能力,包括軟件工程能力,,如何寫代碼,,如何管理代碼,如何做系統(tǒng)集成,,還有回歸測試,,如何進(jìn)行代碼的版本控制等等。后來我面試人的時(shí)候,,也比較關(guān)注這些東西,。

一個(gè)人工智能的技術(shù)能不能做得好,核心往往不僅僅是算法,,而是底下的架構(gòu),,還有系統(tǒng)。比如論文中其實(shí)是很好的分布式推理算法,,但是我因?yàn)槿鄙龠@個(gè)架構(gòu),,就沒有辦法把這個(gè)東西實(shí)現(xiàn)出來。后來像深度學(xué)習(xí)也是這樣的,。最近看到陳天奇他們的實(shí)驗(yàn)室,,把算法、架構(gòu),、操作系統(tǒng)都放在一個(gè)實(shí)驗(yàn)室里面來運(yùn)作,,覺得這是一個(gè)特別好的事情。目前算法和架構(gòu)之間的裂縫太大了,。

工程是解決人工智能的核心鑰匙,。如果代碼能力不行,架構(gòu)能力不行,,工程能力不行,,在這個(gè)情況下,根本就不應(yīng)該去談算法,。優(yōu)先應(yīng)該把工程能力補(bǔ)起來,,然后再談算法。

NO.9 陣容太豪華

第九點(diǎn),,陣容太豪華,。

這一點(diǎn)不太好說具體的項(xiàng)目是什么,太敏感了,。

但是我就從邏輯上給大家講一下,。因?yàn)橐粋€(gè)項(xiàng)目如果太豪華,核心的問題就是沉沒成本,。

我們也經(jīng)??吹揭恍┏鮿?chuàng)公司,,不管是從商務(wù)上,還是從技術(shù)上,,特別優(yōu)秀的人組成了一個(gè)公司,,最后還是會(huì)失敗。為什么,?因?yàn)楸容^優(yōu)秀的人,,就是想要做大的事情。一個(gè)大的事情,,很難一下子就做對(duì),。通常大的事情,是從小的事情成長起來的,。如果我們不能夠讓豪華的陣容,,從小事做起,通常這樣一個(gè)事情是會(huì)失敗的,。

微信圖片_20180803162158.jpg

邏輯很簡單,,我就不多說了。

NO.10 時(shí)機(jī)不到,,運(yùn)氣不好

第十點(diǎn),,我可以把所有其他的因素丟到這兒,就是時(shí)機(jī)不到,、運(yùn)氣不好,。

微信圖片_20180803162259.jpg

其實(shí)可以把所有其他的事情都?xì)w結(jié)為運(yùn)氣不好,。

比如說我們現(xiàn)在看深度學(xué)習(xí),,比如像attention、卷積,、LSTM,、聯(lián)想記憶等等所有這些概念在90年代,我讀研究生的時(shí)候,,這些概念都已經(jīng)有了,,但是當(dāng)時(shí)是做不到的。當(dāng)時(shí)即使有了這些算法,,也沒有這樣的算力,,即使有了這樣的算力,沒有這樣的數(shù)據(jù),。

在2000年的時(shí)候,,我在碩士畢業(yè)之后,就在研究一種分層的多層神經(jīng)網(wǎng)絡(luò),。我們把它稱為hierarchical neural network,,跟后來深度學(xué)習(xí)的想法非常接近,。我?guī)е@個(gè)想法,去見我的博士導(dǎo)師,。說我想繼續(xù)沿著這個(gè)方向往前走,,但他說現(xiàn)在整個(gè)神經(jīng)網(wǎng)絡(luò)都已經(jīng)拿不到投資了,你再往前走,,也走不下去,,所以后來就放棄了這個(gè)方向,準(zhǔn)備做語義網(wǎng)了,。10年之后,,這個(gè)方法終于找到了機(jī)會(huì),后來就變成了深度學(xué)習(xí)的東西,。

很多時(shí)候,,時(shí)機(jī)不到,即使你有這個(gè)算法,,你也做不到,。90年代的神經(jīng)網(wǎng)絡(luò),差不多花了10年的時(shí)間,,才等到了自己的復(fù)蘇,。

知識(shí)圖譜也是一樣的,知識(shí)圖譜大概也等了十幾年的時(shí)間,,到了最近這幾年才真正地得到了大規(guī)模的應(yīng)用,。

總結(jié)

讓我們來取個(gè)反,做個(gè)總結(jié):

微信圖片_20180803162326.jpg

最后一點(diǎn),,時(shí)機(jī)和運(yùn)氣再啰嗦一下,。

很多時(shí)候,我們是真的不知道這件事情能不能做得成,,也真的不知道,,自己處于什么樣的歷史階段。很難預(yù)言未來是什么,,但是至少有一點(diǎn),,如果我們多去了解一些算法層面的發(fā)展,包括人工智能的發(fā)展史,,包括相關(guān)的這些技術(shù)的發(fā)展史,,能夠更好地理解未來。

所以我也推薦一下尼克老師的《人工智能簡史》這本書,。我看了兩遍都挺有收獲的,。看了這東西,,能更多地理解什么是時(shí)機(jī),,什么是運(yùn)氣,。

有時(shí)候我也經(jīng)常會(huì)讀一些經(jīng)典的文章,十年前或20年前的書,,我讀了還是挺有啟發(fā)的,。比如說,今年我又把Tim Berners-Lee《編織萬維網(wǎng)》那本書又重新讀了一遍,,讀了一遍以后,,我就堅(jiān)定信心了。

知識(shí)圖譜這樣一個(gè)互聯(lián)全世界的記憶的系統(tǒng),,大概率到2030年能夠?qū)崿F(xiàn),,這還是一個(gè)很遙遠(yuǎn)的時(shí)間,但是根據(jù)歷史規(guī)律,,應(yīng)該到2030年能實(shí)現(xiàn)了,。

一方面,降低我們現(xiàn)在的預(yù)期,,另一方面也給我們前進(jìn)更大的鼓勵(lì),。

場景躍遷理論

微信圖片_20180803162411.jpg

剛才反反復(fù)復(fù)提到了,要控制用戶的預(yù)期,,控制自己的預(yù)期,。做一個(gè)項(xiàng)目,要從小到大,,循序漸進(jìn),。最后把所有的東西抽象到更高層面上,我自己總結(jié)為一個(gè)理論,,叫場景躍遷理論,。

這個(gè)理論的核心,是說一個(gè)人工智能的公司需要多次的產(chǎn)品市場匹配,,就是Product-Market Fit,。如果提供了一個(gè)產(chǎn)品,市場恰恰需要,,而這個(gè)市場恰恰又很大,就說得到了一個(gè)產(chǎn)品市場匹配,。

經(jīng)典的互聯(lián)網(wǎng)創(chuàng)業(yè),,通常做一次產(chǎn)品的市場匹配,就可以成功了,。但人工智能往往要做好幾次,,互聯(lián)網(wǎng)公司和人工智能公司很不一樣。

一個(gè)稱為養(yǎng)雞場模式,,一個(gè)稱為養(yǎng)小孩模式,。

互聯(lián)網(wǎng)公司是一種養(yǎng)雞場模式,,它是一個(gè)大規(guī)模的復(fù)雜系統(tǒng)Complex system。它的關(guān)鍵是可擴(kuò)展性,。我養(yǎng)了一只雞,,我發(fā)現(xiàn)這只雞不錯(cuò),我養(yǎng)1萬只雞,,這就是養(yǎng)雞場模式,。核心就是如何能養(yǎng)一萬只雞,這就叫可擴(kuò)展性,。

人工智能應(yīng)用是另外一種類型的復(fù)雜系統(tǒng),,叫Complicated system,它是有非常多的組件,,通常是上百種奇奇怪怪的組件組合在一起,。它的核心并不是養(yǎng)一萬只雞,更多像養(yǎng)小孩一樣,,生完孩子,,從小給他換尿布,給他喂奶,,教他走路,,教他說話,逗他玩,,小學(xué),、中學(xué)、大學(xué),,一路把他養(yǎng)大,,每一個(gè)階段所面臨的主要任務(wù)都不一樣。你如何能夠讓這小孩成長,,我們把它稱為可演進(jìn)性,,這才是AI公司最核心的因素。

把一個(gè)AI的公司給養(yǎng)大,,其實(shí)是特別不容易的事情,。就跟養(yǎng)小孩一樣,往往前5年的時(shí)間,,都在搭團(tuán)隊(duì),,搞基礎(chǔ),特別辛苦,。公司存活的觀念就是,,如何能夠在演進(jìn)的過程中,逐步地掙錢,而不是試圖一步到位地找到市場產(chǎn)品結(jié)合點(diǎn),。不僅僅是在人工智能的階段要掙錢,,在人工智障的階段,也要能夠掙錢,。

沒有一個(gè)完整的系統(tǒng),,怎么能掙錢?只能夠把系統(tǒng)中的某些組件拿出去,,做部分的商業(yè)化,。就好像毛毛蟲到蝴蝶一樣,毛毛蟲要蛻皮,,蛻好幾次,,才能變成一個(gè)蝴蝶。毛毛蟲階段,,它要吃樹葉子,,在蝴蝶那個(gè)階段,它是要吃花蜜,,所以它在兩個(gè)不同的階段,,它的商業(yè)模式是完全不一樣的。人工智能公司也要蛻好幾次皮,。在早期的時(shí)候,,因?yàn)楫a(chǎn)品還不夠完善,所以人工智能公司早期都是外包公司,,這是正常的,,就應(yīng)該接受,這是發(fā)展必經(jīng)的階段,。

總結(jié)今天所說的一切,,人工智能是一種新興的事物,它是非常復(fù)雜的東西,。很難用傳統(tǒng)的舊經(jīng)驗(yàn)來套這樣一種東西的發(fā)展,,必須經(jīng)過很長時(shí)間的演化,才能夠達(dá)到成熟的狀態(tài),。而這個(gè)演化力才是我們想做一個(gè)成功的商業(yè)的嘗試,,最關(guān)鍵的因素。如何保證在一次又一次的場景躍遷當(dāng)中,,團(tuán)隊(duì)不散架,,這樣的能力,才是決定了某一個(gè)商業(yè)上面能不能成功的最大的關(guān)鍵,。

我覺得不僅僅是商業(yè),不管是在學(xué)校里做研究也好,還是在大型跨國公司里做研究也好,,很多道理都是一樣的,。就是如何能夠循序漸進(jìn)地,從小到大地來做,,謝謝大家,!



本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,,并不代表本網(wǎng)站贊同其觀點(diǎn),。轉(zhuǎn)載的所有的文章、圖片,、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有,。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無法一一聯(lián)系確認(rèn)版權(quán)者。如涉及作品內(nèi)容,、版權(quán)和其它問題,,請(qǐng)及時(shí)通過電子郵件或電話通知我們,以便迅速采取適當(dāng)措施,,避免給雙方造成不必要的經(jīng)濟(jì)損失,。聯(lián)系電話:010-82306118;郵箱:[email protected],。