中圖分類號: TN919.8,;TP183 文獻標識碼: A DOI:10.16157/j.issn.0258-7998.200051 中文引用格式: 劉佳,,安鶴男,李蔚,,等. 基于幀循環(huán)網(wǎng)絡的視頻超分辨率技術[J].電子技術應用,,2020,46(9):43-46. 英文引用格式: Liu Jia,,An Henan,,Li Wei,et al. Video super-resolution based on frame recurrent network[J]. Application of Electronic Technique,,2020,,46(9):43-46.
Video super-resolution based on frame recurrent network
Liu Jia,An Henan,,Li Wei,,Zhang Changlin,Tu Zhiwei
College of Electronics and Information Engineering,,Shenzhen University,,Shenzhen 518061,China
Abstract: Compared with single image super-resolution, video super-resolution needs to align and fuse time series images. This frame-recurrent-based video super-resolution network consists of three parts:(1)The frame sequence alignment network extracts the image features and aligns the neighbor frames to the center frame,;(2)The frame fusion network fuses the aligned frames and supplements the center frame information with the neighbor frame information,;(3)The super-resolution network enlarges the fused image to obtain the final high-definition image. Experiments show that, compared with existing algorithms, video super-resolution technology based on frame loop network produces sharper images and higher quality.
相比于單幅圖像超分辨,,視頻超分辨可分為對齊、融合,、重建3個步驟,。對齊網(wǎng)絡的結果會直接影響融合網(wǎng)絡與重建網(wǎng)絡的效果。早期,,基于深度學習的視頻超分辨方法[4]參考相鄰視頻幀之間的光流場扭曲鄰居幀從而達到對齊的目的,。然而,Xue Tianfan等人[5]指出基于光流場的對齊方法并非視頻超分辨的最優(yōu)解,,提出基于任務流的視頻超分辨率方法,;JO Y H等人[6]提出了隱式運動補償?shù)姆椒ㄒ?guī)避流場的計算。