《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 基于GrabCut的改進(jìn)分割算法
基于GrabCut的改進(jìn)分割算法
信息技術(shù)與網(wǎng)絡(luò)安全 10期
王 茜,,何小海,吳曉紅,,吳小強,,滕奇志
(四川大學(xué) 電子信息學(xué)院 圖像信息研究所,四川 成都610065)
摘要: 針對GrabCut算法對于特征不明顯,、紋理復(fù)雜的圖像分割效果不理想,,且需要用戶交互的問題,提出一種基于GrabCut的改進(jìn)分割算法,。首先,,運用圖像增強,對特征不明顯的圖像進(jìn)行改善,,提高圖像質(zhì)量,;然后,,利用YOLOv4網(wǎng)絡(luò)對圖像進(jìn)行目標(biāo)檢測,獲取前景目標(biāo)所在矩形框位置,,從而減少用戶操作,;其次,在高斯混合模型(GMM)中加入圖像像素的位置信息和局部二值模式算子(LBP)提取的像素紋理特征信息,,優(yōu)化高斯混合模型參數(shù),,改進(jìn)GrabCut算法,實現(xiàn)圖像優(yōu)化分割,;最后,,將分割圖像掩膜與原始圖像結(jié)合,得到原始圖像,。實驗結(jié)果表明,,對特征不明顯、紋理信息復(fù)雜的圖像,,該算法分割效果更優(yōu),。
中圖分類號: TP391.41
文獻(xiàn)標(biāo)識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.10.007
引用格式: 王茜,何小海,,吳曉紅,,等. 基于GrabCut的改進(jìn)分割算法[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,,40(10):43-47,,52.
An improved segmentation algorithm based on GrabCut
Wang Qian,He Xiaohai,,Wu Xiaohong,,Wu Xiaoqiang,Teng Qizhi
(Institute of Image Information, School of Electronics and Information Engineering,,Sichuan University,, Chengdu 610065,China)
Abstract: To slove the problem that GrabCut does not have satisfactory segmentation effect for images with obscure features and complex textures and it needs user interaction, an improved segmentation algorithm based on GrabCut was proposed. Firstly, image enhancement was used, to improve the image with less detailed features. Secondly, YOLOv4 network was trained and the image was put in YOLOv4 to get the rectangular position of the foreground target. Thirdly, Gaussian Mixing Model(GMM) was incorporated location information of image pixels and texture feature information extracted by LBP operator, to optimize GMM model parameters and improve GrabCut algorithm. Finally, the original segmented image was obtained by combining the segmented image mask with the original image. The experimental results show that the proposed method performs better on images with less detailed features and complex texture information.
Key words : GrabCut,;k-means,;image enhancement;image segmentation

0 引言

圖像分割是圖像處理的重要手段之一[1],,是將圖像分為不同的區(qū)域,,區(qū)域內(nèi)具有一定的相似性,不同區(qū)域之間的特征差異較為明顯,。2001年,,Boykov等[2]提出GraphCut算法,用戶在待分割圖像背景和前景上畫線,指明少量前景像素和背景像素,,算法建立s-t圖,,利用最小割最大流實現(xiàn)圖像分割。GraphCut算法采用灰度直方圖,,無法分割彩色圖像,。針對該問題,Rother等[3]提出GrabCut算法,,用戶用矩形框標(biāo)記前景位置,,通過k-means將像素聚類為k類,初始化k個GMM模型,,構(gòu)建能量函數(shù)并利用該函數(shù)對圖像進(jìn)行分割,。由于GrabCut算法操作簡單,分割精度較高而被廣泛關(guān)注和應(yīng)用,,國內(nèi)外的許多學(xué)者對該算法進(jìn)行了改進(jìn),。周良芬等[4]采用二次分水嶺對梯度圖像做預(yù)處理,增強圖像邊緣點,,再利用熵的特性優(yōu)化能量分割函數(shù),,提高圖像分割精度,但是增加了算法的復(fù)雜程度,。董茜等[5]通過SLIC超像素算法對圖像進(jìn)行分割,,利用分割的超像素圖建立加權(quán)圖,減少節(jié)點數(shù),,提高分割效率,,但傳統(tǒng)SLIC在紋理明顯處會出現(xiàn)不規(guī)則超像素塊。白雪冰等[6]將圖像從RGB空間轉(zhuǎn)化到Lab空間,,再利用SLICO算法對圖像進(jìn)行預(yù)處理,改善GMM模型參數(shù),,使分割不受背景凹凸紋理的干擾,,可優(yōu)化分割,但是仍然存在少部分過分割的問題,。楊小鵬等[7]采用Faster R-CNN[8]減少用戶交互,,融入圖像位置信息提高GrabCut分割效果,但對紋理復(fù)雜的圖像分割效果無明顯改善,。劉靜等[9]針對背景復(fù)雜,、細(xì)節(jié)豐富的皮影提取問題,采用相對總變差平滑的方法優(yōu)化GrabCut分割,,由于算法具有交互性,,主觀的選取會影響分割結(jié)果。詹琦梁等[10]利用Mask RCNN算法對待分割圖像進(jìn)行初步分割,,再結(jié)合SLIC超像素分割得到的超像素塊,,獲得初始三元圖,,最后利用GrabCut算法對其進(jìn)行分割,客觀上提高了分割精確度,,卻消耗了更多的運行時間,。




本文詳細(xì)內(nèi)容請下載:http://forexkbc.com/resource/share/2000003802





作者信息:

王  茜,何小海,,吳曉紅,,吳小強,滕奇志

(四川大學(xué) 電子信息學(xué)院 圖像信息研究所,,四川 成都610065)


此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。